Formation-Flying SAR as a Spaceborne Distributed Radar Based on a Microsatellite Cluster

Department of Industrial Engineering, University of Naples Federico II
Outline of presentation

• FF-SAR Theoretical aspects
 – Definition
 – Monostatic SAR vs FF-SAR
 – Applications

• End-to-end FF-SAR Mission concept
 – Satellite Design
 – Final budgets

• Conclusions
FF-SAR DEFINITION
Formation-Flying SAR (FF-SAR)

Generalization of the conventional synthetic aperture radar principle and of standard interferometric SAR techniques
Formation-Flying SAR (FF-SAR)

Many co-flying platforms cooperate with each other to implement new and complex SAR missions, otherwise impossible with the current monolithic systems.
FF-SAR theoretical aspects

Formation-Flying SAR (FF-SAR)

Highly flexible system able to implement a wide range of different working modes.

Spatial diversity for enhancing the overall system performance and the quality of the delivered products.
FROM MONOSTATIC SAR TO FF-SAR
SAR is a radar transmitting short frequency modulated pulses to achieve high range resolution.

Backscattered echoes from the same ground target are collected and coherently combined, simulating in such a way an extremely long antenna.
Single-platform monostatic SAR system limitation

Example- Spotlight

Swath-to-azimuth resolution constraint for a monostatic platform system...

...as the swath width becomes larger azimuth resolution decreases

\[
\frac{W_g}{\delta_{az}} < \frac{c}{2V}
\]
FF-SAR offers a feasible solution to the intrinsic limitation of a conventional SAR.

Azimuth resolution can be decoupled from swath width by introducing multiple channels and applying **Digital Beamforming (DBF)** techniques.

The coherent combination of the multiple receiving signals allows to reduce the **PRF** of transmitting signal by a factor of \(N \) (where \(N \) is the number of receivers), hence enabling to enlarge the width of the non-ambiguous swath on the ground, without arising of azimuth ambiguities.
SAR interferometry issues related to the use of monostatic platform systems

SAR interferometry obtains high accurate estimates of height and surface displacements by measuring the difference in phase of echoes scattered by the same targets and acquired by two different positions.

With a monostatic platform only repeat-pass interferometry is possible, that suffers by **temporal decorrelation and atmospheric distortions.**
FF-SAR as a multistatic SAR system maps the scene without any significant time lag, thus giving the possibility to implement single-pass interferometry, thereby increasing the interferometric performance with respect to a single platform system.

Multi-Baseline Single-Pass interferometry allows to drastically improve the DEM (Digital Elevation Model) accuracy.
Monostatic SAR imaging effects due to geometric observation

SAR is able to measure the elevation of the imaged terrain by means of cross-track interferometry but has no resolving capability along this dimension.

SAR images could be affected by the well-phenomenon of **LAYOVER**.

If different terrain patches are at the same slant-range distances from the sensor, they will be mapped in the same range-azimuth resolution cell even if they are at different elevation angles in the SAR images.
FF-SAR offers the capability to resolve multiple sources along the third dimension, i.e. a natural solution for the layover.

Single-pass SAR tomography:
array processing of the sparse aperture formed by a formation flying cluster of multiple receivers displaced in the cross-track/vertical plane, i.e. thus realizing a baseline normal to the line of sight.
Expected FF-SAR performance improvement and applications shall be:

- Signal-to-Noise Ratio (SNR) improvement
- Coherent Resolution Enhancement (CRE)
- Pulse Repetition Frequency (PRF) reduction
- High-Resolution Wide-Swath (HRWS)
- 3D Imaging
- Ground Moving Target Indication (GMTI)
END-TO-END
FF-SAR MISSION CONCEPT
Missions relying on two cooperative satellites successfully flown

- Space demonstration of distributed SAR concepts

PRISMA
Tecnholgy demonstrator

GRACE
Aimed at gravimetry

TanDEM-X
High-resolution InSAR

...upcoming missions:
SESAME - STEREOID - HRWS DLR’s Mission

All these missions are based on sub-500 kg class satellites!
The distributed system concept is naturally coupled with the use of small space platforms, for several advantages:

- The system overall cost is lower
- The replacement of a failed satellite is easier and faster
- It is possible to gradually update on board technologies by incrementally replacing elements of the formation, which is generally an issue for large space systems.

Our work is aimed at...

In this framework, the design of an end-to-end space demonstrator concept was commissioned by DSO National Lab, Singapore, to the UniNa Aerospace Systems Team, to investigate the feasibility of a distributed SAR system with micro-satellites.
FF-SAR concept demonstrator mission is intended as a reduced performance space mission.

Reduced Performance intended as:
- Limited duty cycle per orbit
- Limited life time
- Limitations on revisit time and coverage
- Minimum DSAR redundancy, i.e. just 3 satellites

SPACE SEGMENT
- Micro-satellite class (< 100 kg)
 - 1 Tx/Rx, i.e. monostatic, satellite
 - 2 Rx-only satellites
 - X-band operations
FF-SAR DEMONSTRATION CONCEPT

Full demonstration of FF-SAR features at both:

- **System level ➔** distributed payload synchronization and formation flying
- **Product level ➔** SNR improvement, PRF reduction, HRWS, CRE, GMTI, 3D IMAGING
Starting from the design of monostatic platform, **targeted to achieve 8m x 8m resolution on ground, with -24 dB NESZ, from an orbit altitude of 550 km, and 20° inclination**

<table>
<thead>
<tr>
<th>Imaging Requirements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Resolution</td>
<td>8 m x 8 m</td>
</tr>
<tr>
<td>NESZ</td>
<td>-24 dB</td>
</tr>
<tr>
<td>Orbit altitude</td>
<td>550 km</td>
</tr>
<tr>
<td>Antenna Size</td>
<td>0.7x4.9 m (7 tiles 0.7 m each)</td>
</tr>
<tr>
<td>Chirp Bandwidth</td>
<td>Up to 100 MHz</td>
</tr>
<tr>
<td>PRF</td>
<td>Up to 3.5 kHz</td>
</tr>
<tr>
<td>Radar duty cycle</td>
<td>0.07 (at 3.5 kHz PRF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tx/Rx SAR Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence Angle</td>
<td>30°</td>
</tr>
<tr>
<td>Swath width</td>
<td>35 km</td>
</tr>
<tr>
<td>Peak Power</td>
<td>Up to 4 kW</td>
</tr>
<tr>
<td>Data Rate</td>
<td>200 Mbps</td>
</tr>
<tr>
<td>Orbit duty cycle</td>
<td>5% (about 5 min acquisition per orbit)</td>
</tr>
<tr>
<td>Data Volume Per Orbit</td>
<td>7 GB</td>
</tr>
</tbody>
</table>
FF-SAR properties are exploited to demonstrate performance improvement

FF-SAR performance improvement

- **Azimuth resolution enhancement**, applying digital beamforming techniques
- **Ground-range resolution enhancement**, by exploitation of Coherent Resolution Enhancement in Range
- **SAR tomography and Ground Moving Target indication testing**, at the nominal 8m x 8m resolution

To demonstrate FF-SAR features, 3 test case scenarios has been investigated
Test case scenarios

Mode 1
- 3 satellites with dominant along-track separations (up to 200m)
- 8 m x 4 m resolution
- Ambiguities suppressed by digital beamforming in azimuth
- SNR improvement

Mode 2
- 3 satellites with dominant cross-track or vertical separations (up to 1km)
- 6 m x 6 m ground-range resolution
- CRE in range
- SNR improvement

Mode 3
- 8 m x 8 m resolution
- 3D imaging
- GMTI
SATELLITE PRELIMINARY DESIGN
Goal is the preliminary design of Tx/Rx and Rx-only Satellites:

- 1-year demonstration mission
- limit size and mass while accommodating for SAR and FF operations

At this stage, critical aspects investigated related to:

- Electrical Power System (EPS)
- Thermal Management (TM)
- Attitude and Orbit Control System (AOCS)
- FF maintenance
- TT&C and PL data management

First-trial mass estimate (used as reference):

- 90/110 kg mass range and 1.14 m3 volume for Tx/Rx Sat
- 60/80 kg mass range and 0.81 m3 for Rx-only Sat
Significant design choices that made possible the use of microsatellites are:

- No active control of the absolute trajectories (ΔV is low)
- The relative orbits are designed to be passively safe (they falls in the category of safe ellipses).
- SAR processing by means of Digital Beamforming allows one to relax formation control, i.e. the baseline could be also very different from the nominal values
- There is not an on-board synchronization system, thanks to autonomous calibration and GPS time referencing
- The antenna is not an active phased array, but a planar passive antenna. Mechanical beamsteering implemented by active maneuvers
Final Budgets are in line with the initial rough estimates (Thermal Control & Structure can be estimated using typical percentages vs dry mass)

- It is remarked that computed values are only indicative of the satellite class

<table>
<thead>
<tr>
<th>Category</th>
<th>Tx/Rx Satellite</th>
<th>Rx Satellite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Power System</td>
<td>10-22</td>
<td>3</td>
</tr>
<tr>
<td>Attitude & Orbit Determination and Control</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Propulsion (wet mass)</td>
<td>11-13</td>
<td>9-11</td>
</tr>
<tr>
<td>TT&C and Data Handling</td>
<td>4-9</td>
<td>4-9</td>
</tr>
<tr>
<td>Thermal Control System & Structure</td>
<td>17-25</td>
<td>12-18</td>
</tr>
<tr>
<td>SAR Instrument</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>Total Wet Mass</td>
<td>92-119</td>
<td>65-78</td>
</tr>
<tr>
<td>Initial Rough Estimate (Dry)</td>
<td>90-110</td>
<td>60-80</td>
</tr>
</tbody>
</table>
Final mass budgets indicate that the total mass is about 100 kg for the Tx/Rx satellite and less than 80 kg for Rx-only ones. Hence the results are in line with the use of microsatellites.

Simulation analysis confirmed the capability of the selected relative trajectory to support the demonstration of different working modes, such HRWS, CRE and 3D imaging.
Thank you for your attention