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L sumMMmARY

» The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.
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» The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.

> Attitude stabilization based on active magnetic devices represents a challenging
problem.

» In this work, a purely-magnetic control law is presented that drives a LEO
spacecraft to three-axis attitude stabilization in the orbit frame.
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» A proof of almost global exponential stability is provided, for a proper selection
of control gains, in the framework of Singular Perturbation Theory (SPT).
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L sumMMmARY

The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.

Attitude stabilization based on active magnetic devices represents a challenging
problem.

In this work, a purely-magnetic control law is presented that drives a LEO
spacecraft to three-axis attitude stabilization in the orbit frame.

A proof of almost global exponential stability is provided, for a proper selection
of control gains, in the framework of Singular Perturbation Theory (SPT).

System robustness is proven in the presence of environmental disturbances,
implementation issues, and actuator saturation limits, if the effect of magnetic
residual dipoles is mitigated by online estimation.
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L_SYSTEM DYNAMICS

LAngular Momentum Balance

In a body-fixed frame Fg = {P; &1, &2, €3}, it is
Jo+wx (Jw) =M 4 m) (1)

where
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LAngular Momentum Balance

In a body-fixed frame Fg = {P; &1, &2, €3}, it is
Jo+wx (Jw) =M 4 m) (1)

where
» @1, @, and &3 are principal axes of inertia
w = (wl,w27w3)7— is the absolute angular velocity vector of the spacecraft,

J = diag(J1, Jo, J3) is the spacecraft inertia matrix,

vVvyy

J # J1,J3 and J; = J3, that is, the spacecraft has axisymmetric inertia
properties about &;

v

M), and M@ are the control and disturbance torques, respectively.
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L External Torques

The magnetic control torque is

M = m x b,
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The magnetic control torque is

M) = m x b, )

» m is the magnetic dipole moment vector generated by the coils,

O-TIME-SCALE MAGNETIC ATTITUDE C OF LEO SPACECRAFT



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L_SYSTEM DYNAMICS

L External Torques

The magnetic control torque is

M) = m x b, )

» m is the magnetic dipole moment vector generated by the coils,

» b = Tpgp bp is the local geomagnetic field vector expressed in terms of
body-frame components,

O-TIME-SCALE MAGNETIC ATTITUDE C OF LEO SPACECRAFT



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L_SYSTEM DYNAMICS

L External Torques

The magnetic control torque is

M) = m x b, )

» m is the magnetic dipole moment vector generated by the coils,

» b = Tpgp bp is the local geomagnetic field vector expressed in terms of
body-frame components,

» Fo = {P;01,02,03} is the local-vertical/local-horizontal orbit frame.

O-TIME-SCALE MAGNETIC ATTITUDE C OF LEO SPACECRAFT



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L_SYSTEM DYNAMICS

L External Torques

The magnetic control torque is

M) = m x b, )

» m is the magnetic dipole moment vector generated by the coils,

» b = Tpgp bp is the local geomagnetic field vector expressed in terms of
body-frame components,

» Fo = {P;01,02,03} is the local-vertical/local-horizontal orbit frame.
The disturbance torques in LEO are

M) — ppee) L pg(rm) o pg(3) 1 pg(sp) (3)
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» m is the magnetic dipole moment vector generated by the coils,
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L External Torques

The magnetic control torque is

M) = m x b, )

» m is the magnetic dipole moment vector generated by the coils,

» b = Tpgp bp is the local geomagnetic field vector expressed in terms of
body-frame components,

» Fo = {P;01,02,03} is the local-vertical/local-horizontal orbit frame.

The disturbance torques in LEO are

M) — ppee) L pg(rm) o pg(3) 1 pg(sp) (3)

> M
> M(™) s the residual magnetic torque,
> M

() is the aerodynamic torque,
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L_SYSTEM DYNAMICS

L External Torques

The magnetic control torque is

M) = m x b, )

» m is the magnetic dipole moment vector generated by the coils,

» b = Tpgp bp is the local geomagnetic field vector expressed in terms of
body-frame components,

» Fo = {P;01,02,03} is the local-vertical/local-horizontal orbit frame.

The disturbance torques in LEO are

M) — ppee) L pg(rm) o pg(3) 1 pg(sp) (3)

M
M

88) is the gravity gradient torque,
M) is the residual magnetic torque,

a) is the aerodynamic torque,

vyvyyvyy
= S8

s'P) is the solar radiation pressure torque.
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L_SYSTEM DYNAMICS

LKinematics

A circular low Earth orbit of radius re, period T,p, and orbit rate n = 27/ Ty is
considered.

_—

body-fixed frame F;

.......... >
orbit frame ¥,
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L_SYSTEM DYNAMICS

LKinematics

A circular low Earth orbit of radius re, period T,p, and orbit rate n = 27/ Ty is
considered.

—_—
body-fixed frame F;

. >
orbit frame Fy,

The coordinate transformation matrix between Fp and Fpg,
Euler sequence, is:

parametrized by a 3-1-2
cpclh — spspsd  cOsyp + cipsgsd —cepsl

Tgo = —cosy cogcy s¢ (4)
csl + cOspsyp  sysh — cpclsgp  cpchd
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L_SYSTEM DYNAMICS

LKinematics

Euler angles evolve as a function of the angular speed of the spacecraft relative to Fp,
given by w" = w — Tpo w%’b, where w‘gb =(0,n,0)7.
The kinematics of yaw, roll, and pitch angles is thus written as:

= (—w1 sinf + w3 cosf + n sin ¢ cos 1) / cos ¢ (5)
¢ = wy cos + w3 sin — n siny (6)
6 = wo + (w1 singsing — w3 singcosd — ncosv) / cos ¢ (7)
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L ATTITUDE STABILIZATION

L Control Law

Let 6 = Tpo (O, 1,O)T be the unit vector parallel to the direction of 02. Two desired
angular momentum vectors are defined:

» hy = (0,7,0)7 (the angular momentum vector becomes parallel to &);
» H,; = n& (the angular momentum becomes parallel to 8).
Provided A > 0, n: R — R is a linear function of 6:

n(0) =Jon (1 —X0) (8)

Two different angular momentum error variables are introduced:

¢=Hqy(0) —Jw 9
e=hy(0) —Jw (10)

The magnetic control law is:
MO = (13-bb") (ke ¢+kee) (1)

where k¢ and k. are positive gains and b=n/|b|.
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L ATTITUDE STABILIZATION

L Stability Analysis

Let Z=T[ ¢ and E=T} e
Z=—[1h(1s-bb") Ta] (ke Z+ ke E) + T] Hy (12)

E=— [T,; (h—BET) TBI] (k¢ Z + ke E)

' (13)
~TL[(J7 TE) x hy] + T} hg
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L ATTITUDE STABILIZATION

L Stability Analysis

Let Z=T[ ¢ and E=T} e
Z=—[1h(1s-bb") Ta] (ke Z+ ke E) + T] Hy (12)

E=— [T,; (h—BET) TBI] (k¢ Z + ke E)

' (13)
~TL[(J7 TE) x hy] + T} hg

Given Y = (Z7, ET)T, Y € RS, the system in Egs. (12) and (13) achieves the form

Y =—A(t)KY —B(t,6,Y)—D(t,0,Y) (14)
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L Stability Analysis

Let Z=T[ ¢ and E=T} e
Z=—[1h(1s-bb") Ta] (ke Z+ ke E) + T] Hy (12)

E=— [T,; (h—BET) TBI] (k¢ Z + ke E)

' (13)
~TL[(J7 TE) x hy] + T} hg

Given Y = (Z7, ET)T, Y € RS, the system in Egs. (12) and (13) achieves the form

Y =—A(t)KY —B(t,0,Y)—D(t,0,Y) (14)
where

eRﬁXS (15)

is a time-dependent matrix.
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT

L ATTITUDE STABILIZATION
L Stability Analysis

kels  Osxs 66
K= ¢ R6X 16
( Osxs kels | € (16)
is a gain matrix.
B0.V)=( 17 arrh , (a7)
TBI [(J TB/E) X hd(e)]
is the gyroscopic coupling term, and
D(t,0,Y) = TET' Ha ) _ s Vg (18)
Tz hy Tg

is the term related to the time derivative by = (0, —A Jy n6,0)7.

de Angelis, and Giulietti
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L ATTITUDE STABILIZATION

L Stability Analysis

kels  Osxs 66
K= ¢ R6X 16
( Osxs kels | € (16)
is a gain matrix.
B0.V)=( 17 arrh , (a7)
TBI [(J TB/E) X hd(e)]
is the gyroscopic coupling term, and
D(t,0,Y) = TET' Ha ) _ s Vg (18)
Tz hy Tg

is the term related to the time derivative by = (0, —A J» n6,0)7. Given the definitions
of E, Z,and Y, it is:

cos 1)

6=Q (hg(8) —TeiSY)—n
cos ¢

(19)

where

Q= (tan¢ sin0/Jy, 1/Jp, —cos0 tanp/J3) € R1*3
and § = (03><3 I3) € R3%6,
Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L ATTITUDE STABILIZATION

L Stability Analysis

Lemma 1. Consider the nonlinear time-varying system defined by Egs. (14) and (19).
There exist A\, k¢, and ke such that the origin (YT7 G)T = 07x1 is almost-globally
exponentially stable.

Proof: Let x = 6 and z = Y be the vectors containing the slow and the fast variables,
respectively. In the standard form:

x = f(t,x,z,€) (20)
ez=g(t,x,z,¢€) (21)
where
F(tx.2,6) = Q (hg(6) ~ Tey SY) —n (22)
cos ¢
and
g(t,x,z,¢) = —A(t)KY — B(t,0,Y) — eD (t,0,Y) (23)

See Theorem 11.4 in 'H.K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall,
Upper Saddle River, NJ (2002) Ch. 11'.
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L ATTITUDE STABILIZATION

L Stability Analysis

Theorem 11.4 Consmder the singulnrly perturbed system

(11.47)
i = L E) (11.48)

Assume that the following assumptions ere sotigfied
(t,x.2) € [0,00) x B, % [0,z

0,2) =D and gi{1,0,0,2) = Q.

fe equation

tounded for z — hit,x) € B,.
» The origin of the reduced system

& = f(t,x ht

is exponintinlly stable,
* The erigin of the boundary-layer system

dy

dr

= glt, x,y

is exporentiolly stable, wniformly m (t,x).

Then, there erists £7 = 0 such that for all =
onentiolly

Avanzini, de Angelis, and Giulietti
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L ATTITUDE STABILIZATION

L Stability Analysis

Remark 1. The requirements on control gains are posed in order to artificially provide
the error dynamics with a two-time-scale behavior. The nominal time constant for the
slow dynamics is 7 = 1/(27\) orbits.
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L ATTITUDE STABILIZATION

L Stability Analysis

Remark 1. The requirements on control gains are posed in order to artificially provide
the error dynamics with a two-time-scale behavior. The nominal time constant for the
slow dynamics is 7 = 1/(27\) orbits.

Remark 2. Spacecraft dynamics can be represented as x = f(t,x) + w(t,x), where
f(t, x) is the nominal attitude dynamics and w(t, x) includes non-nominal effects. The
solution of the perturbed system is uniformly bounded.
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L ATTITUDE STABILIZATION

L Stability Analysis

Remark 1. The requirements on control gains are posed in order to artificially provide
the error dynamics with a two-time-scale behavior. The nominal time constant for the
slow dynamics is 7 = 1/(27\) orbits.

Remark 2. Spacecraft dynamics can be represented as x = f(t,x) + w(t,x), where
f(t, x) is the nominal attitude dynamics and w(t, x) includes non-nominal effects. The
solution of the perturbed system is uniformly bounded.

Remark 3. The presence of the attitude matrix only affects the evolution in time of
the terms B (t,0,Y) and D (t,0,Y), influencing the rate of convergence toward the
equilibrium, without any consequence on the asymptotic behavior of the closed-loop
system.
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L ATTITUDE STABILIZATION

L Stability Analysis

Remark 1. The requirements on control gains are posed in order to artificially provide
the error dynamics with a two-time-scale behavior. The nominal time constant for the
slow dynamics is 7 = 1/(27\) orbits.

Remark 2. Spacecraft dynamics can be represented as x = f(t,x) + w(t,x), where
f(t, x) is the nominal attitude dynamics and w(t, x) includes non-nominal effects. The
solution of the perturbed system is uniformly bounded.

Remark 3. The presence of the attitude matrix only affects the evolution in time of
the terms B (t,0,Y) and D (t,0,Y), influencing the rate of convergence toward the
equilibrium, without any consequence on the asymptotic behavior of the closed-loop
system.

Remark 4. A singularity occurs at ¢ = +90 deg. From a mathematical standpoint, this
implies that the proposed stabilization proof holds almost globally.
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L NUMERICAL VALIDATION

L Case 1: Nominal System

Parameter Symbol Value Units

Spacecraft data

Nominal moments of inertia JF=J5 1.416 kg m?
J3x 2.0861 kg m?

Maximum control magnetic dipole Mmax 35 Am?

Orbit data

Radius (circular orbit) re 7021  km

Period T 5710 s

Inclination i 98 deg

Right ascension of the ascending node RAAN 137  deg

Sample maneuver

(0.2,2,02)T  deg/s

o o wo
Initial Conditions Yo, do, fo 10,12, —45 deg

k¢ = ke = 0.0009 s71, A =0.07 rad7 1,
the control dipole is generated as m = m. = (l; X M(°)> /11bll,

Euler angles are bounded as in —7 < 9,0 < +7 and —7/2 < ¢ < +7/2,
no disturbance torques, no uncertainties

>
| 4
>
| 4
| 4

Avanzini, de Angelis, and Giulietti IAA-AAS-C

ideal measurements, ideal actuation
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TWO-TIME-SCALE MAGN
L NUMERICAL VALIDATI

ETIC ATTITUDE CONTROL OF LEO SPACECRAFT
ON

L Case 1: Nominal System

S/C angular
momentum [Nms]

« [deg]

a = cos (6 -
target direction

O-TIME-SCALE MAGN

0.1
a)

In ||

80
b)
60

40

i \’M

0

0 02 04 06 08 12 4 6 8 10 12
time [orbits]

&) is the angular distance between the desired spin axis &, and the
&
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L NUMERICAL VALIDATION

L Case 1: Nominal System

=)
o}
k=2
=

¢ [deg]
o
<

-50
180

0 [deg]

0.5 12 4 6 8 10 12
time [orbits]

-180
0

Stabilization of 6: nominal time constant 7 = 1/(2w\) ~ 2 orbits (theory), effective
time constant 7 & 1.9 orbits (simulation)
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 17
L NUMERICAL VALIDATION
LCase 2: Perturbed Uncertain System

Reference spacecraft: ESEO (European Student Earth Orbiter)

MISSION CBIECTIVES

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L NUMERICAL VALIDATION

L Case 2: Perturbed Uncertain System

Mass distribution uncertainties

> Estimated inertia matrix: J* = diag(1.938,2.086,0.894) kg m?

» True spacecraft inertia matrix:

2.0282 0.0127  —-0.0016
J= 0.0127 2.05639  —0.0302
—0.0016 —0.0302 0.8658

Disturbance torques

> Gravity gradient

> Aerodynamic: p =6.39 - 10~ 13 kg/m3, Cp =2.2, dimensions Ly = L, = 0.33 m
and L3 = 0.66 m, moment arm r, = (0.0082,0.0030, 0.0492)7 m

> Solar radiation pressure: reflectance factor gs = 0.8, rsp = r¢p, direction of the

Sun § = Tp (0.578,0.578,0.578) 7, sunlit area A; = /A2 + A2 + A2 = 0.33 m?
» Residual magnetic dipole: m,, = (0.15,—0.12, —0.10)7 A m?

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13
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TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT
L NUMERICAL VALIDATION

L Case 2: Perturbed Uncertain System

Non-ideal sensors modeling
> Angular rate components: standard deviation equal to 0.01 deg/s for the
sampled additive white noise signals
»> Euler angles: standard deviation equal to 1.07 deg
» Magnetic field components: standard deviation equal to 3 nT, plus a residual
bias (42,12, —20)7 nT

Non-ideal actuation modeling

» Control signals are sampled at a frequency of 1 Hz

> A first-order dynamics with a time constant 7,, = 20 ms is considered (the MTs
rise/fall time, calculated as 57, is 100 ms)

» A duty-cycle of 800 ms is considered

Control gains

» Closed-loop 'fast’ dynamics: k; = k. = diag(0.0069,0.0138,0.0230) s—1
» Closed-loop 'slow’ dynamics: A = 0.15 rad—!
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LNUI\/IERICAL VALIDATION
L Case 2: Perturbed Uncertain System

Residual dipole estimation
An Extended Kalman Filter, based on the work by Inamori et al.l estimates the residual
dipole, i1 .

> Estimated state vector at time k: %, = (&7, ] )T . € R

» Observation vector at time k: z, = by € R3

» The prediction phase of the filter is influenced by the input u; = my € R3
EKF parameters

» Update time interval: At =1t, —t,_1 =0.1s

> EKF initialization: %, = Ogx1, P, = diag(107°,107%,107°,1075,105,107%)
> Assigned observation noise covariance matrix: Ry = R =10"8. /3 T2
>

Assigned process noise covariance matrix: @, = Q =10"13. I¢

1 . - N .
T. Inamori, N. Sako, S. Nakasuka, Magnetic dipole moment estimation and compensation for an accurate
attitude control in nano-satellite missions, Acta Astronautica, 68 (2011) 2038-2046.
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L CONCLUSIONS

» The approach is intuitive, simple to handle.

» The theoretical approach, based on SPT results, is validated numerically.

» The control laws are shown to perform well in a (severely) non-nominal scenario.

> Satisfactory pointing accuracy is obtained for a sample small satellite mission for
Earth observation.

» An extensive simulation campaign can improve the pointing performance by
optimal selection of k¢, k<, and A.
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