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SUMMARY

I The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.

I Attitude stabilization based on active magnetic devices represents a challenging
problem.

I In this work, a purely-magnetic control law is presented that drives a LEO
spacecraft to three-axis attitude stabilization in the orbit frame.

I A proof of almost global exponential stability is provided, for a proper selection
of control gains, in the framework of Singular Perturbation Theory (SPT).

I System robustness is proven in the presence of environmental disturbances,
implementation issues, and actuator saturation limits, if the effect of magnetic
residual dipoles is mitigated by online estimation.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2

SUMMARY

I The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.

I Attitude stabilization based on active magnetic devices represents a challenging
problem.

I In this work, a purely-magnetic control law is presented that drives a LEO
spacecraft to three-axis attitude stabilization in the orbit frame.

I A proof of almost global exponential stability is provided, for a proper selection
of control gains, in the framework of Singular Perturbation Theory (SPT).

I System robustness is proven in the presence of environmental disturbances,
implementation issues, and actuator saturation limits, if the effect of magnetic
residual dipoles is mitigated by online estimation.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2

SUMMARY

I The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.

I Attitude stabilization based on active magnetic devices represents a challenging
problem.

I In this work, a purely-magnetic control law is presented that drives a LEO
spacecraft to three-axis attitude stabilization in the orbit frame.

I A proof of almost global exponential stability is provided, for a proper selection
of control gains, in the framework of Singular Perturbation Theory (SPT).

I System robustness is proven in the presence of environmental disturbances,
implementation issues, and actuator saturation limits, if the effect of magnetic
residual dipoles is mitigated by online estimation.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2

SUMMARY

I The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.

I Attitude stabilization based on active magnetic devices represents a challenging
problem.

I In this work, a purely-magnetic control law is presented that drives a LEO
spacecraft to three-axis attitude stabilization in the orbit frame.

I A proof of almost global exponential stability is provided, for a proper selection
of control gains, in the framework of Singular Perturbation Theory (SPT).

I System robustness is proven in the presence of environmental disturbances,
implementation issues, and actuator saturation limits, if the effect of magnetic
residual dipoles is mitigated by online estimation.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2

SUMMARY

I The use of magnetic actuators for attitude control of spacecraft orbiting on a
Low Earth Orbit (LEO) is the subject of extensive research.

I Attitude stabilization based on active magnetic devices represents a challenging
problem.

I In this work, a purely-magnetic control law is presented that drives a LEO
spacecraft to three-axis attitude stabilization in the orbit frame.

I A proof of almost global exponential stability is provided, for a proper selection
of control gains, in the framework of Singular Perturbation Theory (SPT).

I System robustness is proven in the presence of environmental disturbances,
implementation issues, and actuator saturation limits, if the effect of magnetic
residual dipoles is mitigated by online estimation.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 2



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 3

Outline

SUMMARY
SYSTEM DYNAMICS

Angular Momentum Balance
External Torques
Kinematics

ATTITUDE STABILIZATION
Control Law
Stability Analysis

NUMERICAL VALIDATION
Case 1: Nominal System
Case 2: Perturbed Uncertain System

CONCLUSIONS

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 3



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 4

SYSTEM DYNAMICS

Angular Momentum Balance

In a body-fixed frame FB = {P; ê1, ê2, ê3}, it is

J ω̇ + ω × (J ω) = M(c) + M(d) (1)

where

I ê1, ê2, and ê3 are principal axes of inertia

I ω = (ω1, ω2, ω3)T is the absolute angular velocity vector of the spacecraft,

I J = diag(J1, J2, J3) is the spacecraft inertia matrix,

I J2 6= J1, J3 and J1 = J3, that is, the spacecraft has axisymmetric inertia
properties about ê2

I M(c), and M(d) are the control and disturbance torques, respectively.
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SYSTEM DYNAMICS

External Torques

The magnetic control torque is

M(c) = m × b, (2)

I m is the magnetic dipole moment vector generated by the coils,

I b = TBO bO is the local geomagnetic field vector expressed in terms of
body-frame components,

I FO = {P; ô1, ô2, ô3} is the local-vertical/local-horizontal orbit frame.

The disturbance torques in LEO are

M(d) = M(gg) + M(rm) + M(a) + M(srp) (3)

I M(gg) is the gravity gradient torque,

I M(rm) is the residual magnetic torque,

I M(a) is the aerodynamic torque,

I M(srp) is the solar radiation pressure torque.

.
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SYSTEM DYNAMICS

Kinematics

A circular low Earth orbit of radius rc , period Torb, and orbit rate n = 2π/Torb is
considered.

y

q

y

f

q
f

orbit frame

body-fixed frame

MTs

The coordinate transformation matrix between FO and FB , parametrized by a 3-1-2
Euler sequence, is:

TBO =

 cψcθ − sφsψsθ cθsψ + cψsφsθ −cφsθ
−cφsψ cφcψ sφ

cψsθ + cθsφsψ sψsθ − cψcθsφ cφcθ

 (4)
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SYSTEM DYNAMICS

Kinematics

Euler angles evolve as a function of the angular speed of the spacecraft relative to FO ,
given by ωr = ω − TBO ω

orb
O , where ωorb

O = (0, n, 0)T .
The kinematics of yaw, roll, and pitch angles is thus written as:

ψ̇ = (−ω1 sin θ + ω3 cos θ + n sinφ cosψ) / cosφ (5)

φ̇ = ω1 cos θ + ω3 sin θ − n sinψ (6)

θ̇ = ω2 + (ω1 sinφ sin θ − ω3 sinφ cos θ − n cosψ) / cosφ (7)
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ATTITUDE STABILIZATION

Control Law

Let σ̂ = TBO (0, 1, 0)T be the unit vector parallel to the direction of ô2. Two desired
angular momentum vectors are defined:

I hd = (0, η, 0)T (the angular momentum vector becomes parallel to ê2);

I Hd = η σ̂ (the angular momentum becomes parallel to ô2).

Provided λ > 0, η : R→ R is a linear function of θ:

η(θ) = J2 n (1− λ θ) (8)

Two different angular momentum error variables are introduced:

ζ = Hd (θ)− J ω (9)

ε = hd (θ)− J ω (10)

The magnetic control law is:

M(c) =
(
I 3 − b̂ b̂

T
) (

kζ ζ + kε ε
)

(11)

where kζ and kε are positive gains and b̂ = b/||b||.
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ATTITUDE STABILIZATION

Stability Analysis

Let Z = TT
BI ζ and E = TT

BI ε:

Ż = −
[
TT

BI

(
I 3 − b̂ b̂

T
)
TBI

] (
kζ Z + kε E

)
+ TT

BI Ḣd (12)

Ė = −
[
TT

BI

(
I 3 − b̂ b̂

T
)
TBI

] (
kζ Z + kε E

)
− TT

BI

[(
J−1TBIE

)
× hd

]
+ TT

BI ḣd

(13)

Given Y =
(
ZT ,ET

)T
, Y ∈ R6, the system in Eqs. (12) and (13) achieves the form

Ẏ = −A(t)K Y − B (t, θ,Y )−D (t, θ,Y ) (14)

where

A(t) =

 TT
BI

(
I 3 − b̂ b̂

T
)
TBI TT

BI

(
I 3 − b̂ b̂

T
)
TBI

TT
BI

(
I 3 − b̂ b̂

T
)
TBI TT

BI

(
I 3 − b̂ b̂

T
)
TBI

 ∈ R6×6 (15)

is a time-dependent matrix.
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ATTITUDE STABILIZATION

Stability Analysis

K =

(
kζ I 3 03×3

03×3 kε I 3

)
∈ R6×6 (16)

is a gain matrix.

B (t, θ,Y ) =

(
03×1

TT
BI

[(
J−1TBIE

)
× hd (θ)

] ), (17)

is the gyroscopic coupling term, and

D (t, θ,Y ) =

(
TT

BI Ḣd

TT
BI ḣd

)
=

(
I 3

TT
BI

)
ḣd (18)

is the term related to the time derivative ḣd = (0,−λ J2 n θ̇, 0)T .

Given the definitions
of E , Z , and Y , it is:

θ̇ = Q (hd (θ)− TBI S Y )− n
cosψ

cosφ
(19)

where
Q = (tanφ sin θ/J1, 1/J2, − cos θ tanφ/J3) ∈ R1×3

and S = (03×3 I 3) ∈ R3×6.
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ATTITUDE STABILIZATION

Stability Analysis

Lemma 1. Consider the nonlinear time-varying system defined by Eqs. (14) and (19).
There exist λ, kζ , and kε such that the origin (Y T , θ)T = 07×1 is almost-globally
exponentially stable.

Proof: Let x = θ and z = Y be the vectors containing the slow and the fast variables,
respectively. In the standard form:

ẋ = f (t, x , z , ε) (20)

ε ż = g(t, x , z , ε) (21)

where

f (t, x , z , ε) = Q (hd (θ)− TBI S Y )− n
cosψ

cosφ
(22)

and
g(t, x , z , ε) = −A(t)K Y − B (t, θ,Y )− εD (t, θ,Y ) (23)

See Theorem 11.4 in ’H.K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall,
Upper Saddle River, NJ (2002) Ch. 11’.
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ATTITUDE STABILIZATION

Stability Analysis

Remark 1. The requirements on control gains are posed in order to artificially provide
the error dynamics with a two-time-scale behavior. The nominal time constant for the
slow dynamics is τ = 1/(2πλ) orbits.

Remark 2. Spacecraft dynamics can be represented as ẋ = f (t, x) + w(t, x), where
f (t, x) is the nominal attitude dynamics and w(t, x) includes non-nominal effects. The
solution of the perturbed system is uniformly bounded.

Remark 3. The presence of the attitude matrix only affects the evolution in time of
the terms B (t, θ,Y ) and D (t, θ,Y ), influencing the rate of convergence toward the
equilibrium, without any consequence on the asymptotic behavior of the closed-loop
system.

Remark 4. A singularity occurs at φ = ±90 deg. From a mathematical standpoint, this
implies that the proposed stabilization proof holds almost globally.
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NUMERICAL VALIDATION

Case 1: Nominal System

Parameter Symbol Value Units
Spacecraft data
Nominal moments of inertia J?1 = J?3 1.416 kg m2

J?2 2.0861 kg m2

Maximum control magnetic dipole mmax 3.5 A m2

Orbit data
Radius (circular orbit) rc 7 021 km
Period T 5710 s
Inclination i 98 deg
Right ascension of the ascending node RAAN 137 deg
Sample maneuver

Initial Conditions
ω0 (0.2, 2, 0.2)T deg/s

ψ0, φ0, θ0 10, 12,−45 deg

I kζ = kε = 0.0009 s−1, λ = 0.07 rad−1,

I the control dipole is generated as m = mc =
(
b̂ ×M(c)

)
/ ‖b‖,

I Euler angles are bounded as in −π < ψ, θ ≤ +π and −π/2 < φ ≤ +π/2,
I no disturbance torques, no uncertainties
I ideal measurements, ideal actuation
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NUMERICAL VALIDATION

Case 1: Nominal System

0

0.05

0.1

S
/C

 a
ng

ul
ar

m
om

en
tu

m
 [N

m
s]

0 0.2 0.4 0.6 0.8 1
time [orbits]

0

20

40

60

80

 [d
eg

]

2 4 6 8 10 12

J
2
* n

a)

b)

α = cos−1(σ̂ · ê2) is the angular distance between the desired spin axis ê2 and the
target direction σ̂
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NUMERICAL VALIDATION

Case 1: Nominal System
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Stabilization of θ: nominal time constant τ = 1/(2πλ) ≈ 2 orbits (theory), effective
time constant τ ≈ 1.9 orbits (simulation)
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System

Reference spacecraft: ESEO (European Student Earth Orbiter)
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System

Mass distribution uncertainties

I Estimated inertia matrix: J? = diag(1.938, 2.086, 0.894) kg m2

I True spacecraft inertia matrix:

J =

 2.0282 0.0127 −0.0016
0.0127 2.0539 −0.0302
−0.0016 −0.0302 0.8658


Disturbance torques

I Gravity gradient

I Aerodynamic: ρ = 6.39 · 10−13 kg/m3, CD =2.2, dimensions L1 = L2 = 0.33 m
and L3 = 0.66 m, moment arm r cp = (0.0082, 0.0030, 0.0492)T m

I Solar radiation pressure: reflectance factor qs = 0.8, r srp = r cp , direction of the

Sun ŝ = TBI (0.578, 0.578, 0.578)T , sunlit area As =
√

A2
1 + A2

2 + A2
3 = 0.33 m2

I Residual magnetic dipole: mrm = (0.15,−0.12,−0.10)T A m2
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System

Non-ideal sensors modeling

I Angular rate components: standard deviation equal to 0.01 deg/s for the
sampled additive white noise signals

I Euler angles: standard deviation equal to 1.07 deg

I Magnetic field components: standard deviation equal to 3 nT, plus a residual
bias (42,−12,−20)T nT

Non-ideal actuation modeling

I Control signals are sampled at a frequency of 1 Hz

I A first-order dynamics with a time constant τm = 20 ms is considered (the MTs
rise/fall time, calculated as 5 τm, is 100 ms)

I A duty-cycle of 800 ms is considered

Control gains

I Closed-loop ’fast’ dynamics: kζ = kε = diag(0.0069, 0.0138, 0.0230) s−1

I Closed-loop ’slow’ dynamics: λ = 0.15 rad−1
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System

Residual dipole estimation

An Extended Kalman Filter, based on the work by Inamori et al.1 estimates the residual
dipole, m̂rm.

I Estimated state vector at time k: x̂k = (ω̂T , m̂T
rm)T

∣∣∣
k
∈ R6

I Observation vector at time k: zk = bk ∈ R3

I The prediction phase of the filter is influenced by the input uk = mk ∈ R3

EKF parameters

I Update time interval: ∆t = tk − tk−1 = 0.1 s

I EKF initialization: x̂−0 = 06×1, P−
0 = diag(10−9, 10−9, 10−9, 10−5, 10−5, 10−5)

I Assigned observation noise covariance matrix: Rk = R = 10−8 · I 3 T2

I Assigned process noise covariance matrix: Qk = Q = 10−13 · I 6

1
T. Inamori, N. Sako, S. Nakasuka, Magnetic dipole moment estimation and compensation for an accurate

attitude control in nano-satellite missions, Acta Astronautica, 68 (2011) 2038-2046.
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System
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NUMERICAL VALIDATION

Case 2: Perturbed Uncertain System
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CONCLUSIONS

I The approach is intuitive, simple to handle.

I The theoretical approach, based on SPT results, is validated numerically.

I The control laws are shown to perform well in a (severely) non-nominal scenario.

I Satisfactory pointing accuracy is obtained for a sample small satellite mission for
Earth observation.

I An extensive simulation campaign can improve the pointing performance by
optimal selection of kζ , kε, and λ.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25

CONCLUSIONS

I The approach is intuitive, simple to handle.

I The theoretical approach, based on SPT results, is validated numerically.

I The control laws are shown to perform well in a (severely) non-nominal scenario.

I Satisfactory pointing accuracy is obtained for a sample small satellite mission for
Earth observation.

I An extensive simulation campaign can improve the pointing performance by
optimal selection of kζ , kε, and λ.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25

CONCLUSIONS

I The approach is intuitive, simple to handle.

I The theoretical approach, based on SPT results, is validated numerically.

I The control laws are shown to perform well in a (severely) non-nominal scenario.

I Satisfactory pointing accuracy is obtained for a sample small satellite mission for
Earth observation.

I An extensive simulation campaign can improve the pointing performance by
optimal selection of kζ , kε, and λ.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25

CONCLUSIONS

I The approach is intuitive, simple to handle.

I The theoretical approach, based on SPT results, is validated numerically.

I The control laws are shown to perform well in a (severely) non-nominal scenario.

I Satisfactory pointing accuracy is obtained for a sample small satellite mission for
Earth observation.

I An extensive simulation campaign can improve the pointing performance by
optimal selection of kζ , kε, and λ.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25



TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25

CONCLUSIONS

I The approach is intuitive, simple to handle.

I The theoretical approach, based on SPT results, is validated numerically.

I The control laws are shown to perform well in a (severely) non-nominal scenario.

I Satisfactory pointing accuracy is obtained for a sample small satellite mission for
Earth observation.

I An extensive simulation campaign can improve the pointing performance by
optimal selection of kζ , kε, and λ.

Avanzini, de Angelis, and Giulietti IAA-AAS-CU-20-06-13

TWO-TIME-SCALE MAGNETIC ATTITUDE CONTROL OF LEO SPACECRAFT 25


	SUMMARY
	SYSTEM DYNAMICS
	Angular Momentum Balance
	External Torques
	Kinematics

	ATTITUDE STABILIZATION
	Control Law
	Stability Analysis

	NUMERICAL VALIDATION
	Case 1: Nominal System
	Case 2: Perturbed Uncertain System

	CONCLUSIONS

