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Outline

• quaternion feedback (Q-F) and the unwinding phenomenon

• rotation matrix feedback (RM-F)

• comparison between Q-F and RM-F for a Cubesat case study
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Quaternion and Attitude Rate Feedback
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inertial frame

body frame

quaternion vector part          scalar part 

for fully-actuated spacecraft T = �kpqv � kd!

(qv, q4) qv = [q1 q2 q3]
T q4

(PD-Quat) 

almost globally asymptotically stable

either (qv, q4) = (0, 1) or (qv, q4) = (0,�1),

+
(qv, q4) = (0, 1)

(qv, q4) = (0,�1) unstable

body frame = inertial frame 

(Tdisturbance = 0)



Unwinding Phenomenon
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Jx = Jy = Jz = 1 kg m2

kp = 0.1 kd = 0.237

qv(0) = 0 q4(0) = 1

!x(0) = 2 rad/sec

!y(0) = !z(0) = 0

Chaturvedi, Sanyal, McClamroch. Rigid-body attitude control. Control Systems Magazine. 2011

Tdisturbance = 0



Rotation Matrix and Attitude Rate Feedback
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inertial frame

body frame

rotation matrix 

for fully-actuated spacecraft 

(PD-RM) 

almost globally asymptotically stable 
+

body frame = inertial frame R , R = I3⇥3

T = �kp
4

3X

i=1

(ei ⇥RTei)� kd! [e1 e2 e3] = I3⇥3

R = I3⇥3

Chaturvedi, Sanyal, McClamroch. Rigid-body attitude control. Control Systems Magazine. 2011

(Tdisturbance = 0)



PD-Quat vs PD-RM
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Jx = Jy = Jz = 1 kg m2

kp = 0.1 kd = 0.237

qv(0) = 0 q4(0) = 1

!x(0) = 2 rad/sec

!y(0) = !z(0) = 0

=

⇢
90.4 sec PD�Quat
50.8 sec PD�RM

settling time (�44%)

Tdisturbance = 0



PD-Quat vs PD-RM
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Jx = Jy = Jz = 1 kg m2

kp = 0.1 kd = 0.237

qv(0) = 0 q4(0) = 1

!x(0) = 2 rad/sec

!y(0) = !z(0) = 0

Tdisturbance = 0

(�18%)⇡
Z tfin

0
kT(t)k2dt =

⇢
0.62 N2 m2 sec PD�Quat
0.51 N2 m2 sec PD�RM

energy consumption



Back to Cubesat World
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Tigrisat

Jx = Jy = 4.09 · 10�2 kg m2 Jz = 6.5 · 10�3 kg m2

inclination = 97�
altitude = 629 km Torbit = 5832 sec

RAAN =
circular orbit

68.5�

xb

yb

zb

camera pointing along zb 3 orthogonal magnetorquers

objective: stabilize attitude so that body frame
is aligned with orbital frame (camera pointing to Earth)



Quaternion and Attitude Rate Feedback
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quaternion 

vector part                            scalar part q4

(MPD-Quat) 

locally asymptotically stable

either (qv, q4) = (0, 1) or (qv, q4) = (0,�1)

+
(qv, q4) = (0, 1)

(qv, q4) = (0,�1) unstable

body frame = orbital frame 

mcoils = �B⇥ (Kpqv +Kd!bo)

(qv, q4)

qv = [q1 q2 q3]
T

m

Kp =

2

4
293.4863 0.5515 �9.7049
�0.0069 299.8118 �4.1120
4.8505 �0.1118 299.8613

3

5

Kd =

2

4
1.8 · 104 0 0

0 1.8 · 104 0
0 0 1.8 · 104

3

5

) unwinding phenomenon 

(Tdisturbance = 0)

B geomagnetic field at spacecraft 



Rotation Matrix and Attitude Rate Feedback
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locally asymptotically stable 

+

R = I3⇥3

rotation matrix R

body frame = orbital frame 
m

R = I3⇥3

(MPD-RM) [e1 e2 e3] = I3⇥3

Kp =

2

4
293.4863 0.5515 �9.7049
�0.0069 299.8118 �4.1120
4.8505 �0.1118 299.8613

3

5

Kd =

2

4
1.8 · 104 0 0

0 1.8 · 104 0
0 0 1.8 · 104

3

5
mcoils = �B⇥

"
Kp

4

3X

i=1

(ei ⇥RT ei) +Kd!

#

(Tdisturbance = 0)

(no unwinding phenomenon) 

B geomagnetic field at spacecraft 



MPD-Quat vs MPD-RM
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Tdisturbance 6= 0

initial condition 1 initial condition 2 

initial condition 1 initial condition 2
MPD-Quat 1.70 1011 deg sec2 5.15 1011 deg sec2

MPD-RM 2.89 1011 deg sec2 (+70%) 0.04 1011 deg sec2 (-99%)

Integral Time Absolute Error (ITAE) =
Z tfin

0
t principal angle(t) dt



MPD-Quat vs MPD-RM
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Tdisturbance 6= 0

initial condition 1 initial condition 2
MPD-Quat 1.46 A2 m2 sec 2.31 A2 m2 sec
MPD-RM 0.54 A2 m2 sec (-63%) 0.13 A2 m2 sec (-94%)

initial condition 2 initial condition 1 

“energy” consumption ⇡
Z tfin

0
kmcoils(t)k2dt



MPD-Quat vs MPD-RM
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Monte Carlo campaign
1000 simulation runs
random initial attitude
random            with!(0) k!(0)k  20 deg/sec

results

mean ITAE MPD-Quat = 2.56 1011 deg sec2

mean ITAE MPD-RM = 2.34 1011 deg sec2 (-9%)
number of runs in which (ITAE MPD-RM < ITAE MPD-Quat) = 49%

mean “energy” consumption MPD-Quat = 9.94 A2 m2 sec
mean “energy” consumption MPD-RM = 8.71 A2 m2 sec (-12%)
number of runs in which (“energy” MPD-RM < “energy” MPD-Quat) = 96%



Conclusion

• comparison between  MPD-Quat and MPD-RM attitude control laws 
for a CubeSat

• Monte Carlo campaign shows that the two control laws are 
comparable in terms of speed of convergence

• Monte Carlo campaign shows that MPD-RM leads to lower “energy” 
consumption 
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MPD-Quat vs MPD-RM
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(MPD-Quat) 

(MPD-RM) 

wwww� linearization about (qv, q4) = (0, 1)

⇣ = [� ✓  ]T

3-2-1 Euler angles
~wwww linearization about R = I3⇥3

linearizations

initial condition close
to desired attitude

mcoils = �B⇥ (Kpqv +Kd!bo)

mcoils = �B⇥
"
Kp

4

3X

i=1

(ei ⇥RT ei) +Kd!

#

mcoils = �B⇥

Kp

2
⇣ +Kd!

�


