Attitude Stabilization for Magnetically Actuated Spacecraft using Rotation Matrices

Fabio Celani
School of Aerospace Engineering

UNIVERSITÀ DI ROMA

Outline

- quaternion feedback (Q-F) and the unwinding phenomenon
- rotation matrix feedback (RM-F)
- comparison between Q-F and RM-F for a Cubesat case study

Quaternion and Attitude Rate Feedback

body frame
quaternion $\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right) \quad \mathbf{q}_{\mathbf{v}}=\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]^{T}$ vector part q_{4} scalar part body frame $=$ inertial frame \Leftrightarrow either $\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0}, 1)$ or $\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0},-1)$
for fully-actuated spacecraft $\quad \mathbf{T}=-k_{p} \mathbf{q}_{\mathbf{v}}-k_{d} \boldsymbol{\omega} \quad$ (PD-Quat)
$\Downarrow\left(\mathbf{T}_{\text {disturbance }}=\mathbf{0}\right)$
$\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0}, 1) \quad$ almost globally asymptotically stable
$\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0},-1)$ unstable

Unwinding Phenomenon

$J_{x}=J_{y}=J_{z}=1 \mathrm{~kg} \mathrm{~m}$
$k_{p}=0.1 \quad k_{d}=0.237$
$\mathbf{q}_{\mathbf{v}}(0)=\mathbf{0} \quad q_{4}(0)=1$

竍
$\omega_{x}(0)=2 \mathrm{rad} / \mathrm{sec}$
$\omega_{y}(0)=\omega_{z}(0)=0$

$\mathbf{T}_{\text {disturbance }}=\mathbf{0}$

Chaturvedi, Sanyal, McClamroch. Rigid-body attitude control. Control Systems Magazine. 2011

Rotation Matrix and Attitude Rate Feedback

rotation matrix $\mathbf{R} \quad$ body frame $=$ inertial frame $\Leftrightarrow \mathbf{R}=\mathbf{I}_{3 \times 3}$
for fully-actuated spacecraft
$\mathbf{T}=-\frac{k_{p}}{4} \sum_{i=1}^{3}\left(\mathbf{e}_{\mathbf{i}} \times \mathbf{R}^{T} \mathbf{e}_{\mathbf{i}}\right)-k_{d} \boldsymbol{\omega} \quad\left[\mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{2}} \mathbf{e}_{\mathbf{3}}\right]=\mathbf{I}_{3 \times 3}$
$\Downarrow\left(\mathbf{T}_{\text {disturbance }}=\mathbf{0}\right)$
$\mathbf{R}=\mathbf{I}_{3 \times 3} \quad$ almost globally asymptotically stable

Chaturvedi, Sanyal, McClamroch. Rigid-body attitude control. Control Systems Magazine. 2011

PD-Quat vs PD-RM

$$
J_{x}=J_{y}=J_{z}=1 \mathrm{~kg} \mathrm{~m}^{2}
$$

$$
k_{p}=0.1 \quad k_{d}=0.237
$$

$$
\mathbf{q}_{\mathbf{v}}(0)=\mathbf{0} \quad q_{4}(0)=1
$$

$\omega_{x}(0)=2 \mathrm{rad} / \mathrm{sec}$
$\omega_{y}(0)=\omega_{z}(0)=0$
$\mathbf{T}_{\text {disturbance }}=\mathbf{0}$

settling time $=\left\{\begin{array}{l}90.4 \text { sec } \mathbf{P D}-\text { Quat } \\ 50.8 \text { sec } \mathbf{~ P D}-\mathbf{R M} \quad(-44 \%), ~\end{array}\right.$

PD-Quat vs PD-RM

$J_{x}=J_{y}=J_{z}=1 \mathrm{~kg} \mathrm{~m}^{2}$
$k_{p}=0.1 \quad k_{d}=0.237$
$\mathbf{q}_{\mathbf{v}}(0)=\mathbf{0} \quad q_{4}(0)=1$
$\omega_{x}(0)=2 \mathrm{rad} / \mathrm{sec}$
$\omega_{y}(0)=\omega_{z}(0)=0$
$\mathbf{T}_{\text {disturbance }}=\mathbf{0}$

energy consumption $\approx \int_{0}^{t_{f i n}}\|\mathbf{T}(t)\|^{2} d t=\left\{\begin{array}{l}0.62 \mathrm{~N}^{2} \mathrm{~m}^{2} \sec \mathbf{~ P D}-\text { Quat } \\ \left.0.51 \mathrm{~N}^{2} \mathrm{~m}^{2} \sec \mathbf{P D}-\mathbf{R M} \quad(-18 \%)\right)\end{array}\right.$

Back to Cubesat World

Tigrisat

$$
J_{x}=J_{y}=4.09 \cdot 10^{-2} \mathrm{~kg} \mathrm{~m}^{2} \quad J_{z}=6.5 \cdot 10^{-3} \mathrm{~kg} \mathrm{~m}^{2}
$$

circular orbit altitude $=629 \mathrm{~km} \quad T_{\text {orbit }}=5832 \mathrm{sec}$
inclination $=97^{\circ} \quad$ RAAN $=68.5^{\circ}$
camera pointing along $z_{b} \quad 3$ orthogonal magnetorquers

GeoCentric Inertial (GCI) frame
objective: stabilize attitude so that body frame is aligned with orbital frame (camera pointing to Earth)

Quaternion and Attitude Rate Feedback

GeoCentric Inertial (GCI) frame
B geomagnetic field at spacecraft $\mathbf{m}_{\text {coils }}=-\mathbf{B} \times\left(K_{p} \mathbf{q}_{\mathbf{v}}+K_{d} \boldsymbol{\omega}_{\text {bo }}\right)$
(MPD-Quat)
$\Downarrow\left(\mathbf{T}_{\text {disturbance }}=\mathbf{0}\right)$
quaternion $\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)$
vector part $\mathbf{q}_{\mathbf{v}}=\left[\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right]^{T}$ scalar part q_{4}
body frame = orbital frame §

$$
\text { either }\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0}, 1) \text { or }\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0},-1)
$$

$$
\begin{aligned}
& K_{p}=\left[\begin{array}{ccc}
293.4863 & 0.5515 & -9.7049 \\
-0.0069 & 299.8118 & -4.1120 \\
4.8505 & -0.1118 & 299.8613
\end{array}\right] \\
& K_{d}=\left[\begin{array}{ccc}
1.8 \cdot 10^{4} & 0 & 0 \\
0 & 1.8 \cdot 10^{4} & 0 \\
0 & 0 & 1.8 \cdot 10^{4}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0}, 1) \quad \text { locally asymptotically stable } \\
& \left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0},-1) \quad \text { unstable } \Rightarrow \text { unwinding phenomenon }
\end{aligned}
$$

Rotation Matrix and Attitude Rate Feedback

rotation matrix \mathbf{R}
body frame $=$ orbital frame

$$
\begin{gathered}
\Uparrow \\
\mathbf{R}=\mathbf{I}_{3 \times 3}
\end{gathered}
$$

GeoCentric Inertial (GCI) frame
B geomagnetic field at spacecraft

$$
K_{p}=\left[\begin{array}{ccc}
293.4863 & 0.5515 & -9.7049 \\
-0.0069 & 299.8118 & -4.1120 \\
4.8505 & -0.1118 & 299.8613
\end{array}\right]
$$

$$
\left.\begin{array}{l}
\mathbf{m}_{\text {coils }}=-\mathbf{B} \times\left[\frac{K_{p}}{4} \sum_{i=1}^{3}\left(\mathbf{e}_{\mathbf{i}} \times \mathbf{R}^{T} \mathbf{e}_{\mathbf{i}}\right)+K_{d} \boldsymbol{\omega}\right. \\
{\left[\begin{array}{llll}
\mathbf{e}_{\mathbf{1}} & \mathbf{e}_{\mathbf{2}} & \left.\mathbf{e}_{\mathbf{3}}\right]=\mathbf{I}_{3 \times 3} & (\mathbf{M P D}-\mathbf{R M})
\end{array} \quad K_{d}=\left[\begin{array}{ccc}
4.8505 & -0.1118 & 299.8613
\end{array}\right]\right.} \\
0 \\
0
\end{array} \begin{array}{ccc}
1.8 \cdot 10^{4} & 0 & 0 \\
0 & 10^{4} & 0 \\
0 & 1.8 \cdot 10^{4}
\end{array}\right]
$$

$$
\Downarrow\left(\mathbf{T}_{\text {disturbance }}=\mathbf{0}\right)
$$

$\mathbf{R}=\mathbf{I}_{3 \times 3} \quad$ locally asymptotically stable (no unwinding phenomenon)

MPD-Quat vs MPD-RM

$$
\mathbf{T}_{\text {disturbance }} \neq \mathbf{0}
$$

initial condition 2

Integral Time Absolute Error (ITAE) $=\int_{0}^{t_{f i n}} t$ principal angle $(t) d t$

initial condition 1

MPD-Quat MPD-RM

$1.7010^{11} \mathrm{deg} \mathrm{sec}^{2}$
5.1510^{11} deg sec${ }^{2}$
$2.8910^{11} \mathrm{deg} \mathrm{sec}^{2}(+70 \%)$
$0.0410^{11} \mathrm{deg} \mathrm{sec}^{2}(-99 \%)$

MPD-Quat vs MPD-RM

$$
\mathbf{T}_{\text {disturbance }} \neq \mathbf{0}
$$

"energy" consumption $\approx \int_{0}^{t_{f i n}}\left\|\mathbf{m}_{\text {coils }}(t)\right\|^{2} d t$
initial condition 1
initial condition 2

MPD-Quat	$1.46 A^{2} \mathrm{~m}^{2} \mathrm{sec}$	$2.31 \mathrm{~A}^{2} \mathrm{~m}^{2} \mathrm{sec}$
MPD-RM	$0.54 \mathrm{~A}^{2} \mathrm{~m}^{2} \sec (-63 \%)$	$0.13 \mathrm{~A}^{2} \mathrm{~m}^{2} \sec (-94 \%)$

MPD-Quat vs MPD-RM

Monte Carlo campaign

1000 simulation runs
random initial attitude random $\boldsymbol{\omega}(0)$ with $\|\boldsymbol{\omega}(0)\| \leq 20 \mathrm{deg} / \mathrm{sec}$

results

mean ITAE MPD-Quat = $2.5610^{11} \mathrm{deg} \mathrm{sec}^{2}$ mean ITAE MPD-RM = $2.3410^{11} \mathbf{~ d e g ~ s e c}{ }^{2}$ (-9\%) number of runs in which (ITAE MPD-RM < ITAE MPD-Quat) $=49 \%$
mean "energy" consumption MPD-Quat $=9.94 \mathrm{~A}^{2} \mathrm{~m}^{2} \mathrm{sec}$ mean "energy" consumption MPD-RM = 8.71 A ${ }^{2} \mathrm{~m}^{2} \sec (-12 \%)$ number of runs in which ("energy" MPD-RM < "energy" MPD-Quat) = 96\%

Conclusion

- comparison between MPD-Quat and MPD-RM attitude control laws for a CubeSat
- Monte Carlo campaign shows that the two control laws are comparable in terms of speed of convergence
- Monte Carlo campaign shows that MPD-RM leads to lower "energy" consumption

MPD-Quat vs MPD-RM

linearizations

$$
\mathbf{m}_{\text {coils }}=-\mathbf{B} \times\left(K_{p} \mathbf{q}_{\mathbf{v}}+K_{d} \boldsymbol{\omega}_{b o}\right) \quad \text { (MPD-Quat) }
$$

linearization about $\left(\mathbf{q}_{\mathbf{v}}, q_{4}\right)=(\mathbf{0}, 1)$

$$
\mathbf{m}_{\text {coils }}=-\mathbf{B} \times\left[\frac{K_{p}}{2} \boldsymbol{\zeta}+K_{d} \boldsymbol{\omega}\right] \begin{aligned}
& \boldsymbol{\zeta}=\left[\begin{array}{ll}
\phi & \psi
\end{array}\right]^{T} \\
& \text { 3-2-1 Euler angles }
\end{aligned}
$$

$$
\text { linearization about } \mathbf{R}=\mathbf{I}_{3 \times 3}
$$

$$
\mathbf{m}_{\text {coils }}=-\mathbf{B} \times\left[\frac{K_{p}}{4} \sum_{i=1}^{3}\left(\mathbf{e}_{\mathbf{i}} \times \mathbf{R}^{T} \mathbf{e}_{\mathbf{i}}\right)+K_{d} \boldsymbol{\omega}\right]
$$

(MPD-RM)
initial condition close to desired attitude

