

Mothercraft-CubeSat Radio Measurement for Phobos Survey

Hongru Chen* Nicolas Rambaux Daniel Hestroffer

IMCCE - Observatoire de Paris

Background: Phobos exploration (1)

- Many mission proposals
 - MMX, Phootprint, MERLIN, etc.
- Unclear origin of Martian moons
 - captured, formed from Mars ejecta?
- If captured, resemble C-type asteroids
 - Could play a role in transporting water to the rocky planet zone in the early solar system
- Challenging orbing around Phobos
 - Orbits cannot be approximated by Keplerian motions
 - Stability domain of QSO/DRO around Phobos constrained by 1:3 resonance

Background: Phobos exploration (2)

- Determining Phobos physical parameters (e.g. C20, C22, libration amplitude) can
 - De-risk proximity operations (e.g. approaching, landing, descent, etc)
 - Determine its interior structure (homogeneous? monolithic or rubble pile)

Mothercraft-CubeSat Radio Science for Surveying Phobos

Mission plan and objective

Approach: Mothercraft-CubeSat radio science measurement

Mothercraft's orbit: far from Phobos, i.e. safe from impact or escape CubeSat's orbit: close to Phobos, i.e. sensitive to Phobos physical characteristics

Previous work (2): Effective stability

 Hyper-stable orbit stay bounded around the baseline orbit for > 7 days regardless of the injection epoch

Mothercraft-CubeSat Radio Science for Surveying Phobos

Science orbits

e

- ✓ Transfer from 100-km 2D QSO to 24-km 2D QSO costs a ∆v ~ 16 m/s
- ✓ Transfer from 100-km 2D QSO to 30-km 3D QSO costs a ∆v ~ 20 m/s
- ✓ Number of transfer revolutions and time of flight variable for better OD and insertion success rate (H. Ikeda, S. Mitani, Y. Mimasu, G. Ono, K. Nigo, and Y. Kwakatsu, "Orbital Operations Strategy in the Vicinity of Phobos," International Symposium on Space Flight Dynamics, Matsuyama, Japan, 2017)

 Number of transfer revolutions and time of flight variable for better OD and injection success rate (H. Ikeda, S. Mitani, Y. Mimasu, G. Ono, K. Nigo, and Y. Kwakatsu, "Orbital Operations Strategy in the Vicinity of Phobos," International Symposium on Space Flight Dynamics, Matsuyama, Japan, 2017)

Multi-revolution Transfer (example in CR3BP)

 Number of transfer revolutions and time of flight variable for better OD and injection success rate (H. Ikeda, S. Mitani, Y. Mimasu, G. Ono, K. Nigo, and Y. Kwakatsu, "Orbital Operations Strategy in the Vicinity of Phobos," International Symposium on Space Flight Dynamics, Matsuyama, Japan, 2017)

Multi-revolution Transfer (example in CR3BP)

 Number of transfer revolutions and time of flight variable for better OD and injection success rate (H. Ikeda, S. Mitani, Y. Mimasu, G. Ono, K. Nigo, and Y. Kwakatsu, "Orbital Operations Strategy in the Vicinity of Phobos," International Symposium on Space Flight Dynamics, Matsuyama, Japan, 2017)

Multi-revolution Transfer (example in CR3BP)

 Number of transfer revolutions and time of flight variable for better OD and injection success rate (H. Ikeda, S. Mitani, Y. Mimasu, G. Ono, K. Nigo, and Y. Kwakatsu, "Orbital Operations Strategy in the Vicinity of Phobos," International Symposium on Space Flight Dynamics, Matsuyama, Japan, 2017)

CubeSat specifications

Subsystem	Components	Mass, g	Size, mm ³	Power, W	Remark
Structure	1 2U frame	390	100 x 100 x 227		
	Shielding and deployable panels	530			
Thermal	Coating and heaters	50			
Power	> 10 Solar panels	440	82.6 x 98 x 2.2 (each)	12.24	51% of that @ 1 AU
	1 battery	258	93.4 x 87.4 x 23	38.5h	GOMSpace NanoPower BP4
ADCS	1 Reaction wheel set	220	25 x 50 x 55	-0.8	
	Sun sensors		27.4 x 14 x 5.9 (each)	-0.33	
	1 MEMS IMU	20	20 x 20 x 15	-0.6	
	1 Star tracker	170	50 x 50 x 47	-1.5	
Communication	1 UHF transceiver	95	89 x 95 x 11	-4	EnduroSat UHF transceiver II
	1 UHF antenna set	85	98 x 98 x 5.5	-1	EnduroSat UHF antenna
C&DH	1 OBC	100	96 x 90 x 12.4	-0.4	
Propulsion	1 Cold gas jet	676	89 x 89 x 86	-0.25	VACCO End-Mounted Standard MiPS (0.25U)
Margin		301		-0.9	10%
Total		3308		2.4	\checkmark Av budget 29.8 m/s
		Mothercraft-Cu	beSat Radio Science for Surveving	Phobos	

l

CubeSat configuration

R

Doppler measurement (1/2)

Item	Symbol	Unit	Value	Remark
Frequency	f	MHz	435	UHF
Carrier wavelength	λ_{L}	m	0.689178064	
Transmitter output power	Р	Watts	1	EnduroSat UHF transceiver II
Transmitter output power	Р	dBW	-3	
Transmitter output power	Р	dBm	27	
Transmit antenna gain	Gt	dBi	0	EnduroSat UHF antenna
Effective isotropic radiated power	EIRP	dbW	-3	
Propagation path length	S	km	250	
Space loss	Ls	dB	-133.1785853	
Atmospheric and rain attenuation	La	dB	0	
Receive antenna gain	Gr	dBi	0	
Received power	С	dB	-136.1785853	
System noise temperature	Ts	K	135	
Carrier to noise density ratio	C/N0	dB	71.118077	
Carrier to noise density ratio	C/N0	Hz	12936229.2	

incl

Two-way doppler link (USO on Mothercraft)

Item	Symbol	Unit	Value	Remark	
Clock stability / time system noise	σ f/f _{time}		5.00E-13	USO	
Code loop noise bandwidth	Bn	hz	20	Dynami	a atraga arra
Prediction integration time	Т	S	5	taken into account	
FLL tracking noise	σf/f _{FLL}		1.87E-13		
Range-rate uncertainty	σv _r	mm/s	8.00E-02		

L

- Observation variables
 - Range-rate uncertainty set 0.1 mm/s; Measurement taken every 10 s
 - Occultation of Phobos considered
- Period 2026-4-1 12:00 to 2026-4-8 12:00 UTC
 - During eclipse-free season
 - Suitable for the mission launched in 2024
- Ballistic flight for 7 days
- Estimated variables
 - Initial orbital states of mothercraft and CubeSat
 - Phobos gravity C_{nm} and S_{nm} coefficients, and libration amplitude θ
- Dynamical model
 - Ephemerides and gravity of the Sun, Mars, and Phobos considered
 - Gravity field of Mars up to 10 x 10 deg, and Phobos 4 x 4 deg.
 - Orientation angles of Phobos computed analytically
 - State transition matrix w.r.t. estimated variables integrated along the orbit.
- Derive range-rate derivatives w.r.t. C_{nm} and S_{nm} and θ . Covariance study to obtain estimation accuracy.

- Observation variables
 - Range-rate uncertainty set 0.1 mm/s; Measurement taken every 10 s
 - Occultation of Phobos considered
- Period from 2026-4-1 12:00 to 2026-4-8 12:00 UTC
 - During an eclipse-free season
 - Suitable for the mission launched in 2024
- Ballistic flight for 7 days
- Estimated variables
 - Initial orbital states of mothercraft and CubeSat
 - Phobos gravity C_{nm} and S_{nm} coefficients, and libration amplitude θ
- Dynamical model
 - Ephemerides and gravity of the Sun, Mars, and Phobos considered
 - Gravity field of Mars up to 10 x 10 deg, and Phobos 4 x 4 deg.
 - Orientation angles of Phobos computed analytically
 - State transition matrix w.r.t. estimated variables integrated along the orbit.
- Derive range-rate derivatives w.r.t. C_{nm} and S_{nm} and θ . Covariance study to obtain estimation accuracy.

- Observation variables
 - Range-rate uncertainty set 0.1 mm/s; Measurement taken every 10 s
 - Occultation of Phobos considered
- Period 2026-4-1 12:00 to 2026-4-8 12:00 UTC
 - During eclipse-free season
 - Suitable for the mission launched in 2024
- Ballistic flight for 7 days
- Estimated variables
 - Initial orbital states of mothercraft and CubeSat
 - Phobos gravity C_{nm} and S_{nm} coefficients, and libration amplitude θ
- Dynamical model
 - Ephemerides and gravity of the Sun, Mars, and Phobos considered
 - Gravity field of Mars up to 10 x 10 deg, and Phobos 4 x 4 deg.
 - Orientation angles of Phobos computed analytically
 - State transition matrix w.r.t. estimated variables integrated along the orbit.
- Derive range-rate derivatives w.r.t. C_{nm} and S_{nm} and θ . Covariance study to obtain estimation accuracy.

- Observation variables
 - Range-rate uncertainty set 0.1 mm/s; Measurement taken every 10 s
 - Occultation of Phobos considered
- Period 2026-4-1 12:00 to 2026-4-8 12:00 UTC
 - During eclipse-free season
 - Suitable for the mission launched in 2024
- Ballistic flight for 7 days
- Estimated variables
 - Initial orbital states of mothercraft and CubeSat
 - Phobos gravity C_{nm} and S_{nm} coefficients, and libration amplitude θ
- Dynamical model
 - Ephemerides and gravity of the Sun, Mars, and Phobos considered
 - Gravity field of Mars up to 10 x 10 deg, and Phobos 4 x 4 deg.
 - Orientation angles of Phobos computed analytically
 - State transition matrix w.r.t. estimated variables integrated along the orbit.
- Derive range-rate derivatives w.r.t. C_{nm} and S_{nm} and θ . Covariance study to obtain estimation accuracy.

- Observation variables
 - Range-rate uncertainty set 0.1 mm/s; Measurement taken every 10 s
 - Occultation of Phobos considered
- Period 2026-4-1 12:00 to 2026-4-8 12:00 UTC
 - During eclipse-free season
 - Suitable for the mission launched in 2024
- Ballistic flight for 7 days
- Estimated variables
 - Initial orbital states of mothercraft and CubeSat
 - Phobos gravity C_{nm} and S_{nm} coefficients, and libration amplitude θ
- Dynamical model
 - Ephemerides and gravity of the Sun, Mars, and Phobos considered
 - Gravity field of Mars up to 10 x 10 deg, and Phobos 4 x 4 deg.
 - Orientation angles of Phobos computed analytically
 - State transition matrix of observables w.r.t. estimated variables integrated along the orbit.
- Derive range-rate derivatives w.r.t. C_{nm} and S_{nm} and θ . Covariance study to obtain estimation accuracy.

- Observation variables
 - Range-rate uncertainty set 0.1 mm/s; Measurement taken every 10 s
 - Occultation of Phobos considered
- Period 2026-4-1 12:00 to 2026-4-8 12:00 UTC
 - During eclipse-free season
 - Suitable for the mission launched in 2024
- Ballistic flight for 7 days
- Estimated variables
 - Initial orbital states of mothercraft and CubeSat
 - Phobos gravity C_{nm} and S_{nm} coefficients, and libration amplitude θ
- Dynamical model
 - Ephemerides and gravity of the Sun, Mars, and Phobos considered
 - Gravity field of Mars up to 10 x 10 deg, and Phobos 4 x 4 deg.
 - Orientation angles of Phobos computed analytically
 - State transition matrix w.r.t. estimated variables integrated along the orbit.
- Derive range-rate derivatives w.r.t. C_{nm} and S_{nm} and θ . Covariance study to obtain estimation accuracy.

Orientation model of Phobos

Equations of rotational angles of Phobos: (Rambaux et al. 2012)

 $\begin{aligned} &\alpha = 317.652 + 1.789 \sin(\mu_1 d + 169.521) \\ &\delta = 52.875 - 1.078 \cos(\mu_1 d + 169.272) \\ &W = 34.781 + \mu_3 d + 1.2710^{-3} t^2 \\ &- 1.427 \sin(\mu_1 d + 169.488) \\ &- 1.100 \sin(\mu_2 d + 189.271) \end{aligned}$

Baseline libration amplitude, θ

 $\mu_1 = -0.436 \text{deg/days} = -2\pi / 826.21 \text{days}^{-1}$ $\mu_2 = 1128.41 \text{deg/days}$

 $\mu_3 = 1128.85 \text{deg/days}$

Covariance analysis result

- 3D orbit is more time-efficient for recovering $C_{22} C_{30}$, θ and in the first 4 days.
- 3D orbit is advantageous for the estimation of zonal coefficients
- C_{20} resolution reduced to 0.07‰, C_{22} 5‰, and libration amplitude θ 0.7‰ (i.e. 0.0008 deg.)

Covariance study result (2)

Orbit determination for the mothercraft

CubeSat Radio Science for Small-Body Survey

Covariance study result (4)

Orbit determination for the CubeSat

CubeSat Radio Science for Small-Body Survey

Identify interior structure (1)

Mothercraft-CubeSat Radio Science for Surveying Phobos

Identify interior structure (2)

With moment of inertia constrained by the θ resolution of 0.0008 deg, the type of interior structure can be effectively identified.

Figure © Le Maistre et al. 2019

L.

- The mothercraft-CubeSat radio science survey of Phobos carried out on low (< 30-km) and high (100-km) QSO
 - Transfer $\Delta v \cos t$ (20 m/s) affordable to a 2U-CubeSat
 - Range-rate measurement accuracy (0.08 mm/s)
- Estimation of zonal coefficients (i.e. C_{n0}) better with the 3D orbit.
- After 7 days, C₂₀ resolution reduced to 0.07‰, C₂₂ 5‰, and libration amplitude 0.7‰ (i.e. 0.0008 deg.)
 - Resolution of macro-porosity 0.5‰.
 - Can effectively determine the interior structure, at least tell whether heavily-fractured, porous-compressed, or not.
- Inter-sat doppler measurement can also support orbit determination
 - Position accuracy ~0.34 m, velocity accuracy ~ 0.08 mm/s