

A Trajectory Design Framework Leveraging Low-Thrust for the Lunar IceCube Mission

ROBERT PRITCHETT, KATHLEEN HOWELL, DAVID FOLTA

Lunar IceCube

- Goal: Study water transport on lunar surface
- <u>Destination</u>: 100-km x 5000-km lunar orbit
- <u>Physical Specifications:</u> 6U CubeSat, with Busek BIT-3 ion engine.

Spacecraft Parameter	Nominal Value
Initial Mass, m_0	$14 \ kg$
Maximum Thrust, T_{max}	1.24 <i>mN</i>
Maximum Acceleration, a_{max}	$8.857 \times 10^{-5} \ m/s^2$
Specific Impulse, I_{sp}	2640 sec

Challenges and Approach

- <u>Challenges:</u>
 - Large change in energy
 - Primary payload takes priority
- <u>Goal</u>: Develop *adaptable* and *robust* design framework
- <u>Approach Key Elements:</u>
 - Bicircular Restricted Four-Body Problem
 - Staging orbit
 - Direct collocation

Outline

I. Background

- II. Trajectory Design Framework
- III. Sample Trajectory Design
- IV. Concluding Remarks

Outline

I. Background

- II. Trajectory Design Framework
- III. Sample Trajectory Design
- IV. Concluding Remarks

Background – Dynamical Model: BCR4BP

Background – Dynamical Model: BCR4BP

Outline

I. Background

- II. Trajectory Design Framework
- III. Sample Trajectory Design
- IV. Concluding Remarks

Science Orbit

Design Framework – Phase 1: Forward

Propagation from Deployment:

- Coast arc, Thrust arc, Coast arc
- Vary α to generate range of post-flyby behaviors

Design Framework – Phase 1: Backward

Propagation Along Staging Orbit Stable Manifold

Forward Propagation

Backward Propagation

Design Framework – Phase 1: Guess

$$\Sigma_1 = \theta_{S_1} = 135^{\circ}$$

29

Design Framework – Phase 1: Guess

Design Framework – Phase 1: Guess

Design Framework – Phase 2: Forward

Propagation Along Staging Orbit Unstable Manifold

Design Framework – Phase 2: Backward

Propagation from Science Orbit:

- Propagated backward from science orbit insertion (SOI)
- Constant anti-velocity thrust at T_{max}

Design Framework – Phase 2: Backward

Propagation from Science Orbit:

- Propagated backward from science orbit insertion (SOI)
- Constant anti-velocity thrust at T_{max}
- Varying true anomaly at SOI generates a range of capture trajectories

Design Framework – Phase 2: Guess

Design Framework – Phase 2: Guess

Outline

I. Background

- II. Trajectory Design Framework
- III. Sample Trajectory Design
- IV. Concluding Remarks

Sample Trajectory Design – Phase 1: Guess

Sample Trajectory Design – Phase 1: Result

Sample Trajectory Design – Phase 1: Result

Sun- B_{EM} Rotating Frame

Sample Trajectory Design – Phase 2: Guess

Sample Trajectory Design – Phase 2: Result

Sample Trajectory Design – Phase 2: Result

Sample Trajectory Design – Phase 2: Result

Sample Trajectory Design – Final Result

Sample Trajectory Design – Final Result

- Can combine different Phase 1 and 2 results to yield different endto-end solutions
- The following are options for end-to-end Lunar IceCube transfers in the BCR4BP:

Deployment Date	Phase 1		Phasing Time	Phase 2		Total		Final
	∆ <i>m</i> [kg]	TOF [days]	TOF	∆ <i>m</i> [kg]	TOF [days]	∆ <i>m</i> [kg]	TOF [days]	101055
Oct. 2018	0.11	109.82	7.72	0.5	228.77	0.61	346.31	13.39
Jun. 2020	0.21	139.90	0.89	0.86	229.01	1.06	369.80	12.94
Nov. 2020	0.10	117.39	10.24	0.76	232.55	0.86	360.18	13.14

Outline

I. Background

- II. Trajectory Design Framework
- III. Sample Trajectory Design
- IV. Concluding Remarks

Concluding Remarks

- Key Elements of Design Framework:
 - Bicircular Restricted Four-Body Problem (BCR4BP)
 - Staging Orbit
 - Direct Collocation
- Together key elements offer a *robust* and *adaptable* approach for Lunar IceCube mission design
 - Numerous transfer configurations
 - Flexible with changes in launch date

Acknowledgements

- Members of the Multibody Dynamics Research Group
- Navigation and Mission Design Branch at NASA Goddard Space Flight Center
- This work was supported by a NASA Space Technology Research Fellowship

Questions?

Backup Slides

Image Credits: nasa.gov

CubeSat Deployment

Background – Dynamical Model: BCR4BP

Bicircular Restricted Four-Body Problem (BCR4BP):

- Assumptions
 - Earth and Moon (E-M) in circular orbits about barycenter, B_1
 - Sun and B_1 (S- $B_1) in circular orbits about barycenter, <math display="inline">B_2$
 - E-M orbits are coplanar with but \underline{not} affected by S-B₁ orbits
- Time Dependency
 - Sun angle, θ_S , is epoch
 - Model is periodic
- Energy
 - Ballistic energy in the E-M rotating frame is defined:

$$H = 2\Psi - (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \sigma$$

Background – Dynamical Model: BCR4BP

Background – Dynamical Model: BCR4BP ŷ Sun- B_{EM} Rot. Frame Moon Orbit L_1 L_2 B_{EM} x To Sun *Not to Scale

Background – Nearest Neighbor Search

Design Framework – Phase 1: Forward

Design Framework – Phase 1: Forward

Propagation from Deployment:

- 1. Coast arc
- 2. Thrust arc
- 3. Coast arc
- Thrust direction defined by constant angle, *α*, in the velocity-normal-binormal frame.
- Varying α generates a range of post-flyby behaviors.

Design Framework – Phase 2: Backward

Propagation From Science Orbit

Sample Trajectory Design – Phase 1: Guess

June 2020

Sun- B_1 Rotating Frame
Sample Trajectory Design – Phase 1: Guess

October 2018

June 2020

November 2020

Sun- B_1 Rotating Frame

73

Sample Trajectory Design – Phase 1: Result

June 2020

November 2020

Earth-Moon Rotating Frame

Design Framework – Phase 2: Backward

Sample Trajectory Design – Phase 2: Guess

Sample Trajectory Design – Phase 2: Result

Sample Trajectory Design – Phase 2: Result

Sample Trajectory Design – Phase 2: Result

