

Station-keeping about Sun-Mars three-dimensional quasi-periodic Collinear Libration Point Trajectories

Stefano Carletta¹, Mauro Pontani² and Paolo Teofilatto³

5th IAA Conference on University Satellite Missions and CubeSat Workshop

¹PhD, stefano.carletta@uniroma1.it ²Associate professor, mauro.pontani@uniroma1.it ³Full professor, paolo.teofilatto@uniroma1.it

CR3BP: Consider two celestial bodies $m_1 > m_2$ (i.e. Sun & Mars) whose relative motion is described by a **circular orbit** about their center of mass and a **third body** *m* **of negligible mass** (i.e. a spacecraft) moving under their gravitational influence

Sketch of the circular restricted 3-body problem geometry in an inertial frame

Alteralyonation in a frame (synodic) Botatting multiply and mathematical and mathematical time and mathematical and mathemati

Different types of Quasi-periodic orbits exist in the surrounding of the libration points. In this work, we target low-energy Lissajous orbits.

Different families of quasi-periodic collinear libration point orbits

Heliocentric orbits of the Earth and Mars

Apparent Mars retrograde motion (Earth centered)

- Low environmental disturbances
- High observing efficiency
- Extended view of the Earth (L1)
- Constant view of the Sun (L1)
- Thermal stability and low temperature (L2)
- Communications relay (L1, L2, L3)

The Sun-Mars "eccentric" problem

The orbit of Mars around the Sun is quite eccentric

Eccentricity		
0.0934		
0.0549		
0.0489		
0.0167		
0.0011 - 0.0094		

<u>Elliptic</u>

Circular restricted 3-body problem dynamics

$$\begin{cases} \ddot{\mathcal{Z}} = -G \left\{ \frac{m_1[\mathcal{Z} - \mathcal{Z}_1(\theta)]}{R_1^3} + \frac{m_2[\mathcal{Z} - \mathcal{Z}_2(\theta)]}{R_2^3} \right\} \\ \ddot{\mathcal{H}} = -G \left\{ \frac{m_1[\mathcal{H} - \mathcal{H}_1(\theta)]}{R_1^3} + \frac{m_2[\mathcal{H} - \mathcal{H}_2(\theta)]}{R_2^3} \right\} \rightarrow \\ \ddot{\mathcal{Z}} = -G \left\{ \frac{m_1[\mathcal{Z} - \mathcal{Z}_1(\theta)]}{R_1^3} + \frac{m_2[\mathcal{Z} - \mathcal{Z}_2(\theta)]}{R_2^3} \right\} \end{cases} \rightarrow \begin{cases} x' = v_x \\ y' = v_y \\ z' = v_z \\ v_x' = 2v_y + \tau \left(\frac{\partial u}{\partial x} + x\right) \\ v_y' = -2v_x + \tau \left(\frac{\partial u}{\partial y} + y\right) \\ v_z' = \tau \left(\frac{\partial u}{\partial z} + z\right) - z \end{cases}$$

The equilibrium points do not exist for the ER3BP. The problem is solved arranging the ER3BP dynamics in a form which is equivalent to that of the CR3BP

Hamiltonian formalism for the ER3BP

$$\begin{cases} q'_i = \frac{\partial H}{\partial p_i} & [q_1 \quad q_2 \quad q_3]^T = \begin{bmatrix} x \quad y \quad z \end{bmatrix} \\ p'_i = -\frac{\partial H}{\partial q_i} & [p_1 \quad p_2 \quad p_3]^T = \begin{bmatrix} v_x - y \quad v_y + x \quad v_z \end{bmatrix} \end{cases}$$

Hamiltonian function for the ER3BP

$$H = \frac{1}{2}(q_1^2 + q_2^2 + p_1^2 + p_2^2 + p_3^2 + 2p_1q_2 - 2p_2q_1) + \frac{q_3^2}{2} - \tau \left[\sum_{i=1}^3 \frac{\mu_i}{r_i} + \frac{1}{2}(q_1^2 + q_2^2 + q_3^2)\right]$$

_

The Hamiltonian function is expanded in power series to isolate the term depending on the eccentricity. The resulting function is the sum of the Hamiltonian for the CR3BP and a perturbation term.

Hamiltonian for the ER3BP expanded about *e=0*

$$F(\boldsymbol{q}, \boldsymbol{p}, e) = \tau \left[\sum_{i=1}^{3} \frac{\mu_i}{r_i} + \frac{1}{2} (q_1^2 + q_2^2 + q_3^2) \right] = F^* + e \frac{\partial F}{\partial e} \Big|^* + o(e)$$

$$F^* = \frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + (p_1q_2 - p_2q_1) - \left(\frac{1-\mu}{r_1} + \frac{\mu}{r_2}\right)$$

After isolating the perturbation terms, the expanded Hamiltonian (F) is linearized about a collinear libration point of the CR3BP (i.e. L₁)

Linear Hamiltonian for the ER3BP expanded about *e=0*

$$H_{2} = \frac{1}{2}(p_{1}^{2} + p_{2}^{2} + p_{3}^{2} + 2p_{1}q_{2} - 2p_{2}q_{1}) - (C_{1}(\theta) + C_{2}(\theta))\left(q_{1}^{2} - \frac{q_{2}^{2}}{2} - \frac{q_{3}^{2}}{2}\right) + \frac{1}{2}(q_{1}^{2} + q_{2}^{2} + q_{3}^{2})\left\{ -e\cos\theta\left\{ (C_{1}(\theta) + C_{2}(\theta))\left(q_{1}^{2} - \frac{q_{2}^{2}}{2} - \frac{q_{3}^{2}}{2}\right) + \frac{1}{2}(q_{1}^{2} + q_{2}^{2} + q_{3}^{2})\right\} + \frac{1}{2}(e^{2} + e^{2} + e^{2})\left\{ -e\cos\theta\left\{ -q_{1}D_{1}(C_{2}(\theta) - C_{1}(\theta)) + D_{2}(C_{3}(\theta) + C_{4}(\theta))\left(q_{1}^{2} - \frac{5q_{2}^{2}}{2} - \frac{5q_{3}^{2}}{2}\right)\right\}$$

A canonical transformation is defined through the generating function *S*, absorbing the perturbation terms above the second order

Generating function

$$\begin{cases} p_{i} = \frac{\partial S}{\partial q_{i}} \\ Q_{i} = \frac{\partial S}{\partial P_{i}} \end{cases} \qquad \qquad \widetilde{H}(Q_{i}, P_{i}, \theta_{b}, \theta) = H(q_{i}, p_{i}, \theta_{b}, \theta) + \frac{\partial S}{\partial(\theta_{b} - \theta)} \frac{\partial(\theta_{b} - \theta)}{\partial \theta} + \frac{\partial S}{\partial \theta} \end{cases}$$

Linear Hamiltonian in the new normal form

$$H_2 = \frac{1}{2}(P_1^2 + P_2^2 + P_3^2) + P_1Q_2 - P_2Q_1 - \left(\frac{\mu}{|L_x + \mu|^3} + \frac{1 - \mu}{|L_x + \mu - 1|^3}\right)\left(Q_1^2 - \frac{1}{2}Q_2^2 - \frac{1}{2}Q_3^2\right) = h_1Q_2$$

H₂ is equivalent to the linear Hamiltonian function for the CR3BP. The **complexity** introduced by the more accurate model (e) were **absorbed by the transformation**.

Applying a final canonical transformation by Siegel and Moser, H₂ can be expressed as the sum of three local integrals of motion.

Siegel-Moser transformation

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{2} \\ y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = \boldsymbol{T}_{N} \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \\ p_{1} \\ p_{2} \\ p_{3} \end{bmatrix}$$

- T_N depends only on $\rho \lambda 1$ and $\lambda 2$ (eigenvalues) (x_1, y_1) real and only depend on x, y, u and v
- (x_2, y_2) complex and only depend on x, y, u and v
- (x_3, y_3) complex and only depend on z and w

$$H_2 = \rho x_1 y_1 + \frac{\lambda_1}{2} (x_2^2 + y_2^2) + \frac{\lambda_2}{2} (x_3^2 + y_3^2) = h$$

- Unstable equilibrium or drift term (in-plane)
- Center or harmonic oscillator (in-plane)
- Center or harmonic oscillator (out of plane)

Topological location of quasi-periodic orbits

Quasi-periodic orbits are characterized by $x_1 = 0$ and $y_1 = 0$. Given a trajectory crossing the equilibrium region with $x_1 = \alpha_1$ and $y_1 = \alpha_2$ it can be redirected towards the quasi-periodic by applying $\Delta x_1 = -\alpha_1$ and $\Delta y_1 = -\alpha_2$

- 1. Applying $\Delta x_1 = -\alpha_1$ the trajectory converges asymptotically to the quasiperiodic orbit ($x_1 = 0$).
- 2. Including also $\Delta y_1 = -\alpha_2$ the trajectory keeps following the quasi-periodic orbit
- 3. Converting the two equations above into expressions in position and velocity coordinates (inverse Siegel-Moser transformation) provides the station-keeping linear guidance laws

Station-keeping strategy (impulsive)

$$\begin{cases} \delta u = -\frac{1}{\alpha} [(1+2\gamma^2)x + (1-\gamma^2)y + \alpha u - \alpha \sigma v] \\ \delta v = \frac{1}{\alpha \sigma} [(1+2\gamma^2)x + (1-\gamma^2)y + \alpha u - \alpha \sigma v] \end{cases}$$

Station-keeping strategy (continuous)

$$\begin{cases} a_x = -\frac{1}{\alpha} [(1+2\gamma^2)x + (1-\gamma^2)y + \alpha u - \alpha \sigma v] \\ a_y = \frac{1}{\alpha \sigma} [(1+2\gamma^2)x + (1-\gamma^2)y + \alpha u - \alpha \sigma v] \end{cases}$$

The station-keeping strategy is verified by means of numerical analysis. A total of 6000 states was selected from initial conditions corresponding to transit trajectories from the Sun to Mars. These initial states are integrated using the nonlinear equations of motion.

Trajectory converging and keeping a Lissajous orbit about Sun-Mars L₁

Station-keeping trajectory

Lissajous trajectory

Cumulative delta-V

Parameter	Value
Max delta-V [m/sec]	0.1362
Min delta-V [m/sec]	0.0075
Max thrust* [N]	6.491e-5
Min thrust* [N]	3.5771e-6
Max propellant mass** [kg]	0.190
 * Considering a 15 kg satellite ** Considering Xe for BIT-1 	

	RIT 10 EVO [4]	BIT-1 21	BIT-3[21]	BGT-X1 [22]	IFM Nano [32]
Max thrust [N]	5e-3	1.85e-4	1.15e-3	0.1	5e-4
Power [W]	50	8	75	4.5	40
Total mass [kg]	1.8	0.75	1.5	1.5	0.87
Volume [U] ⁵	2	1	2	1	1
Max $\Delta V [m/sec]$	28.8	1.07	6.62	576	2.88

Commercial thrusters properties

Conclusions

- A compact topological description of quasi-periodic orbits for the Sun-Mars ER3BP was provided
- Based on this representation, conditions driving a transit trajectory to the quasi-periodic orbit and station keeping were determined
- The mentioned conditions were converted into guidance laws and verified by means of numerical analysis
- The results indicate that station-keeping can be achieved at limited delta-V, thrust and propellant mass budget. The strategy is compatible with current technology.

Thanks for your attention! Questions?

Station-keeping about Sun-Mars three-dimensional quasi-periodic Collinear Libration Point Trajectories

Stefano Carletta¹, Mauro Pontani² and Paolo Teofilatto³

5th IAA Conference on University Satellite Missions and CubeSat Workshop

¹PhD, stefano.carletta@uniroma1.it ²Associate professor, mauro.pontani@uniroma1.it ³Full professor, paolo.teofilatto@uniroma1.it

1. Solar system exploration using CubeSats

1. Proposed solution: Ballistic captures in the CR3BP

Transit trajectories can be investigated onto the [x1,y1] plane

1. Solar system exploration using CubeSats

1. Proposed solution: Ballistic captures in the CR3BP

Transit trajectories can be investigated onto the [x1,y1] plane

