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Why collinear libration point orbits

CR3BP: Consider two celestial bodies m1 > m2 (i.e. Sun & Mars) whose relative
motion is described by a circular orbit about their center of mass and a third
body m of negligible mass (i.e. a spacecraft) moving under their gravitational
influence

Sketch of the circular restricted 3-body problem geometry in an inertial frame

m1 > m2 >> m



Why collinear libration point orbits

The dynamics of the CR3BP can be conveniently studied in a frame (synodic)
rotating with the celestial bodies m1 and m2.

A total of 5 equilibrium points exist for the CR3BP.
3 of them (L1, L2 and L3) are located along the straight line connecting m1 and m2.

Sketch of the circular restricted 3-body problem geometry in the synodic frame



Why collinear libration point orbits

Different types of Quasi-periodic orbits exist in the surrounding of the libration
points. In this work, we target low-energy Lissajous orbits.

Different families of quasi-periodic collinear libration point orbits



Why collinear libration point orbits

Sun
Earth
Mars

Heliocentric orbits of the Earth and Mars Apparent Mars retrograde motion 
(Earth centered)



Why collinear libration point orbits

• Low environmental disturbances

• High observing efficiency

• Extended view of the Earth (L1)

• Constant view of the Sun (L1)

• Thermal stability and low temperature (L2)

• Communications relay (L1, L2, L3)



The Sun-Mars “eccentric” problem

The orbit of Mars around the Sun is quite eccentric

System Eccentricity

Sun – Mars 0.0934

Earth – Moon 0.0549

Sun – Jupiter 0.0489

Sun – Earth 0.0167

Jupiter – Galilean moons  0.0011 – 0.0094
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Circular restricted 3-body problem dynamics



Hamiltonian formalism and normal forms

The equilibrium points do not exist for the ER3BP. The problem is solved
arranging the ER3BP dynamics in a form which is equivalent to that of the
CR3BP

Hamiltonian formalism for the ER3BP

௜
ᇱ

௜

௜
ᇱ

௜

ଵ ଶ ଷ
்

ଵ ଶ ଷ
்

௫ ௬ ௭

ଵ
ଶ

ଶ
ଶ

ଵ
ଶ

ଶ
ଶ

ଷ
ଶ

ଵ ଶ ଶ ଵ
ଷ
ଶ

௜

௜

ଷ

௜ୀଵ

ଵ
ଶ

ଶ
ଶ

ଷ
ଶ

Hamiltonian function for the ER3BP



Hamiltonian formalism and normal forms

The Hamiltonian function is expanded in power series to isolate the term
depending on the eccentricity. The resulting function is the sum of the
Hamiltonian for the CR3BP and a perturbation term.

Hamiltonian for the ER3BP expanded about e=0
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Hamiltonian formalism and normal forms

After isolating the perturbation terms, the expanded Hamiltonian (F) is linearized
about a collinear libration point of the CR3BP (i.e. L1)

Linear Hamiltonian for the ER3BP expanded about e=0
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Hamiltonian formalism and normal forms

A canonical transformation is defined through the generating function S,
absorbing the perturbation terms above the second order

Generating function
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Linear Hamiltonian in the new normal form

H2 is equivalent to the linear Hamiltonian function for the CR3BP. The complexity
introduced by the more accurate model (e) were absorbed by the
transformation.



Hamiltonian formalism and normal forms

Applying a final canonical transformation by Siegel and Moser, H2 can be
expressed as the sum of three local integrals of motion.

Siegel-Moser transformation
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 TN depends only on ρ λ1 and λ2 (eigenvalues)
 (x1,y1) real and only depend on x, y, u and v
 (x2,y2) complex and only depend on x, y, u and v
 (x3,y3) complex and only depend on z and w
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• Unstable equilibrium or drift term (in-plane)

• Center or harmonic oscillator (in-plane)

• Center or harmonic oscillator (out of plane)



Topological location of quasi-periodic orbits
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Quasi-periodic orbit

Quasi-periodic orbits are characterized by x1 = 0 and y1 = 0. Given a trajectory
crossing the equilibrium region with x1 = α1 and y1 = α2 it can be redirected
towards the quasi-periodic by applying ଵ ଵ and ଵ ଶ



Station-keeping strategy

1. Applying ଵ ଵ the trajectory converges asymptotically to the quasi-
periodic orbit ଵ .

2. Including also ଵ ଶ the trajectory keeps following the quasi-periodic orbit
3. Converting the two equations above into expressions in position and velocity

coordinates (inverse Siegel-Moser transformation) provides the station-
keeping linear guidance laws

Station-keeping strategy (impulsive)
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Station-keeping strategy

The station-keeping strategy is verified by means of numerical analysis. A total of
6000 states was selected from initial conditions corresponding to transit
trajectories from the Sun to Mars. These initial states are integrated using the
nonlinear equations of motion.

Trajectory converging and keeping a Lissajous orbit about Sun-Mars L1



Station-keeping strategy

Station-keeping trajectory Lissajous trajectory



Station-keeping strategy

Cumulative delta-V



Station-keeping strategy

Commercial thrusters properties

Parameter Value

Max delta-V [m/sec] 0.1362

Min delta-V [m/sec] 0.0075

Max thrust* [N] 6.491e-5

Min thrust* [N] 3.5771e-6

Max propellant mass** [kg] 0.190
* Considering a 15 kg satellite
** Considering Xe for BIT-1



Conclusions

• A compact topological description of quasi-periodic orbits for the Sun-Mars

ER3BP was provided

• Based on this representation, conditions driving a transit trajectory to the

quasi-periodic orbit and station keeping were determined

• The mentioned conditions were converted into guidance laws and verified by

means of numerical analysis

• The results indicate that station-keeping can be achieved at limited delta-V,

thrust and propellant mass budget. The strategy is compatible with current

technology.

Thanks for your attention! Questions?
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1. Solar system exploration using CubeSats
1. Proposed solution: Ballistic captures in the CR3BP

Transit trajectories can be investigated onto the [x1,y1] plane
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