5th IAA Conference on University Satellite Missions and CubeSat Workshop

STECCOsat: a laser ranged nanosatellite.

Claudio Paris¹, Stefano Carletta²

¹ Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi
² Scuola di Ingegneria Aerospaziale, Sapienza Università di Roma

MUSEO STORICO DELLA FISICA E CENTRO STUDI E RICERCHE

ENRICO FERMI

Scuola di Ingegneria Aerospaziale

Mission description

Satellite (figure)

Payloads

Orbit

Attitude stabilization

STECCOSAT: A LASER RANGED NANOSATELLITE

STECCO

Space Travelling Egg-Controlled Catadioptric Object

6P PocketQube

- Volume: 33x5x5 cm³
- Mass:1 kg
- Max power:3.04 W

Mission overview

- Launch: Q3 2020 into UNISAT 7 by Gauss srl
- SSO orbit @ altitude of 400-600 km
- Orbit parameters considered for the analysis:
 - Inclination: 97.79 deg
 - Altitude: 570 km
 - Eccentricity: 0

STECCOSAT: A LASER RANGED NANOSATELLITE

STECCO

Space Travelling Egg-Controlled Catadioptric Object

6P PocketQube

- Volume: 33x5x5 cm³
- Mass:1 kg
- Max power:3.04 W

Goals of the mission (payload)

- Testing laser ranging capabilities on nanosats
- Testing innovative ADCS strategies and devices
 - Magnetometer-only attitude determination
 - Liquid reaction wheels
 - Passive viscous spin damper
- Validating SRAM based OBC for PocketQube

STECCOSAT: A LASER RANGED NANOSATELLITE

Payload for Satellite Laser Ranging: 24.5 mm COTS cube corner reflectors.

STECCOSAT: A LASER RANGED NANOSATELLITE

Satellite Laser Ranging

Laser Ranging

Types of cube corner reflectors:

Uncoated (LAGEOS, LARES,...)

- Total internal reflection
- High reflectivity (r>0.9)
- Change polarization
- Cut-off angle (17°)

Back-coated (CHAMP, GRACE,...)

- Lower reflectivity (r<0.8)
- Maintain polarization
- No cut-off angle
- Coatings absorb heath

Hollow

- Few tests in space
- Thermal problems at the joints

STECCOSAT: A LASER RANGED NANOSATELLITE

Laser Ranging: Velocity Aberration

AND CUBESAT WORKSHOP

Laser Ranging: Velocity Aberration

DAO: Dihedral Angle Offset.

To spread the energy on the lateral lobes of the Far Field Diffraction Pattern

DAO correction possible with custom CCRs:

- Expensive; ٠
- Longer procurement time

STECCOSAT: A LASER RANGED NANOSATELLITE

5TH IAA CONFERENCE ON UNIVERSITY SATELLITE MISSIONS AND CUBESAT WORKSHOP

V

Laser Ranging: Velocity Aberration

STECCOSAT: A LASER RANGED NANOSATELLITE

Satellites with small CCRs

Missions with Commercial Off-The-Shelf (COTS) small CCRs

Technosat (Technische Universität Berlin) N. 14 CCRs DIA 10 mm COTS units Launch: 2017

LARES 2 (ASI) N. 303 CCRs DIA 25.4 mm COTS units Launch: 2020

LARES

LARES 2

STECCOSAT: A LASER RANGED NANOSATELLITE

5TH IAA CONFERENCE ON UNIVERSITY SATELLITE MISSIONS AND CUBESAT WORKSHOP

Characterization of STECCOsat CCRs

FFDP characterization for attitude determination

STECCOSAT: A LASER RANGED NANOSATELLITE

Characterization of STECCOsat CCRs

Preliminary FFDP acquisition

25.4 mm COTS coated

25.4 mm COTS uncoated

STECCOSAT: A LASER RANGED NANOSATELLITE

Gravity gradient torque

Beside liquid reaction wheels, which are a payload to be tested, STECCOsat attitude will not be controlled and evolve under the effect of gravity gradient torque

Passive viscous damper stabilization

Because the natural damping torques acting on the satellite are negligible, a passive viscous damper was developed to reduce the initial angular rates (picture for ω =[5 3 -3] deg/sec)

STECCOSAT: A LASER RANGED NANOSATELLITE

Without damper (Aerodynamic and solar radiation pressure torques considered)

STECCOSAT: A LASER RANGED NANOSATELLITE

5TH IAA CONFERENCE ON UNIVERSITY SATELLITE MISSIONS AND CUBESAT WORKSHOP

With damper (example for $\omega_{x;}$ similar behavior along the other axes)

STECCOSAT: A LASER RANGED NANOSATELLITE

5TH IAA CONFERENCE ON UNIVERSITY SATELLITE MISSIONS AND CUBESAT WORKSHOP

Attitude motion with damping

STECCOSAT: A LASER RANGED NANOSATELLITE

5TH IAA CONFERENCE ON UNIVERSITY SATELLITE MISSIONS AND CUBESAT WORKSHOP

Conclusion

- STECCOsat is a 6P PocketQube satellite under development by the School of Aerospace Engineering of Sapienza University of Rome.
- STECCOsat attitude is controlled by gravity gradient torque and stabilized using a passive viscous damper.
- Once stabilized, the satellite will be tracked by satellite laser ranging.
- The satellite is equipped with two small, commercial CCRs.
- One CCR is a coated cube corner, the other one is an uncoated cube corner, to distinguish which face is nadir pointing.
- SLR will provide a measure of the attitude motion.
- FFDP characterization and experimental tests are being performed.

STECCOSAT: A LASER RANGED NANOSATELLITE