

Engineering

CubeSat with Dual Robotic Manipulators for Debris Mitigation and Remediation

Houman Hakima

Michael C.F. Bazzocchi

Institute for Aerospace Studies University of Toronto Mechanical & Industrial Engineering University of Toronto

5th IAA Conference on University Satellite Missions and CubeSat Workshop January 28-31, 2020 Rome, Italy

CubeSat with Dual Robotic Manipulators for Debris Mitigation and Remediation

Overview

- Introduction
- Concept of Operations
- Spacecraft Design
- Attitude and Orbital Maneuvers
- Simulation Scenarios
- Results and Discussion
- Conclusions

Introduction

•

- Space manipulators have seen increased usage in orbit for various applications
- Significant increase in objects in orbit, particularly debris items, and • interest in human and space asset protection
- Trend towards the miniaturization of spacecraft

3

Space Debris Environment

Concept of Operations

Overview of Procedure

- CubeSats stored onboard space station
- Detection of conjunction event and deployment
- Rendezvous maneuver and attitude alignment
- Arm deployment and capture
- Controlled detumbling and reentry

Spacecraft Design

Specifications

12-unit form factor

- Primarily designed based on the utilization of commercially available components.
- 30 × 20 × 20 cm
- 46 solar cells (with 30% efficiency)
- Four battery banks (BM2)

Simulation Specifications

- Key design driver: The type and size of the propulsion system that fits the CubeSat bus.
 - Busek Ion Thruster 3 cm (BIT-3)
 - 8-kg solid iodine reservoir

Iodine reservoir (1.5 kg, expandable)

Table 1. BIT-3 technical specifications [14].

Parameter	Value/Description
Propellant	Iodine, solid storage
System power	56-80 W
Input voltage	28 V (DC)
Propellant mass flow	48 μ g/s (nominal)
Thrust	Up to 1.2 mN
Specific impulse (I_{sp})	Up to 2,300 s
Dry mass	1.4 kg (with gimbal) 1.28 (without gimbal)
Integrated gimbal	2-axis, ±10°

Spacecraft Design

x

Robotic arm model in retracted (top) and extended (bottom) configurations.

~59 cm

~32 cm

Joint 1

Left: Remover CubeSat in the stowed configuration. Right: robotic arm extended.

Spacecraft Design

Mass budget

Table 2. Summary of remover CubeSat's mass budget. The mass values include contingencies. References to the components' data sheets are provided.

Subsystem	Mass [kg] (% of total)	Key Components (× Quantity)
Structures	3.51 (18.31%)	Primary structure (obtained from Solid Edge); reaction wheel plate $(\times 1)$
ADCS	1.42 (7.41%)	Reaction wheel (\times 3) [17]; Sun sensor (\times 5) [18]; magnetometer (\times 1) [19]; magnetorquer (\times 3); GPS receiver (\times 1) [20] and antenna (\times 1) [21]; computer (\times 1) [22]
Power	2.25 (11.74%)	Battery (\times 4) [16]; power board (\times 1); solar cells (\times 46) [15]
C&DH	0.10 (0.52%)	House keeping computer [22]
Communications	0.20 (1.04%)	S-band transmitter $(\times 1)$ [23] and antenna $(\times 2)$ [23]
Propulsion	9.50 (49.56%)	Ion thruster $(\times 1)$ [14]; an 8-kg iodine reservoir $(\times 1)$
Robotic arm	2.0 (10.43%)	Estimated mass $(\times 2)$
Sub-total	18.98 (99.0%)	
Integration	0.19 (1.0%)	Fasteners and wiring harnesses
Total	19.17 (100%)	
Target	20.00	
Margin	0.83 (4.33%)	$Margin (\%) = \frac{Target - Total}{Target} \times 100$

Subsections:

- Rendezvous maneuver
- Detumbling maneuver
- Deorbiting maneuver
- Disturbance torques
- Orbital perturbations

Rendezvous Maneuver

Low-thrust trajectory design

 Gauss's variational equations (GVEs) with steering angles

$$\dot{a} = 2\sqrt{\frac{a^3}{\mu}}T\cos\alpha\sin\beta$$

- a = semimajor axis
- *T* = specific thrust
- α = zimuth steering angle
- β = elevation steering angle
- μ = gravitational parameter

 Transfer angle between the CubeSat and the debris object

$$\psi = \frac{\mu}{4T} \left(\frac{1}{a_{\rm c}^2} - \frac{1}{a_{\rm d}^2} \right)$$

$$\psi = \psi_0 + 2\pi n$$

 ψ_0 = transfer angle n = number of Earth revolutions

$$T = \frac{\mu}{4\psi} \left(\frac{1}{a_{\rm c}^2} - \frac{1}{a_{\rm d}^2} \right)$$

Detumbling Maneuver

Attitude dynamics

 $\dot{\boldsymbol{\omega}} = \mathbf{I}^{-1}(-\boldsymbol{\omega}^{\times}\mathbf{I}\boldsymbol{\omega} + \boldsymbol{\tau})$

• Time optimal detumbling torque

$$\boldsymbol{\tau} = -\frac{\mathbf{I}\boldsymbol{\omega}}{\|\mathbf{I}\boldsymbol{\omega}\|}\tau_{\max}$$

Kinematics of attitude motion

$$\dot{\boldsymbol{\epsilon}} = -\frac{1}{2}\boldsymbol{\omega}^{\times}\boldsymbol{\epsilon} + \frac{1}{2}\eta\boldsymbol{\omega}$$
$$\dot{\boldsymbol{\eta}} = -\frac{1}{2}\boldsymbol{\omega}^{\times}\boldsymbol{\epsilon}$$

Deorbiting Maneuver

• Final decaying orbit

 $a_{\rm f} = R_{\rm e} + 100$ km, where $R_{\rm e} = 6,378$ km

Equations of orbital motion

$$\dot{\mathbf{r}} = \mathbf{v}$$
 $\dot{\mathbf{v}} = -\frac{\mu}{r^3}\mathbf{r} + \mathbf{f}_a + \mathbf{f}_{J_2} + \mathbf{T}$

Maximum thrust

$$\mathbf{T} = -\frac{1}{m} \frac{\mathbf{v}}{\|\mathbf{v}\|} T_{\max}$$

Orbit semimajor axis

$$a = \frac{\mu}{2\mathcal{E}}$$
 $\mathcal{E} = \frac{\mathbf{v}^{\mathrm{T}}\mathbf{v}}{2} - \frac{\mu}{r}$

Disturbance Torques

Gravity-gradient torque

 $\boldsymbol{\tau}_{\rm gg} = \frac{3\mu}{r} \mathbf{r}_{\rm b}^{\times} \mathbf{I} \mathbf{r}_{\rm b}$

Magnetic disturbance torque

 $\boldsymbol{\tau}_{\mathrm{mag}} = -\mathbf{M}_{\mathrm{res}}^{\times}\mathbf{B}_{\mathrm{b}}$

Geomagnetic field

 $\mathbf{B}_{b} = \mathbf{C}_{bi}\mathbf{B}_{i}$

$$\mathbf{B}_{i} = \begin{bmatrix} (B_{r}\cos\delta_{dec} + B_{\theta}\sin\delta_{dec})\cos\alpha_{RA} - B_{\phi}\sin\alpha_{RA} \\ (B_{r}\cos\delta_{dec} + B_{\theta}\sin\delta_{dec})\sin\alpha_{RA} + B_{\phi}\cos\alpha_{RA} \\ B_{r}\sin\delta_{dec} - B_{\theta}\cos\delta_{dec} \end{bmatrix}$$

Orbital Perturbations

Atmospheric drag

$$\mathbf{f}_{\mathrm{a}} = \frac{1}{2} \rho_{\mathrm{a}} \mathsf{C}_{\mathrm{D}} \frac{A}{m} \|\mathbf{v}\| \mathbf{v}$$

 Gravitational perturbation due to J₂ zonal harmonics coefficient

$$\mathbf{f}_{J_2} = \frac{3\mu J_2 R_e^2}{2r^5} \left(\left(5\frac{\mathbf{r}^{\mathrm{T}} \mathbf{z}_{\mathrm{i}}}{r^2} - 1 \right) \mathbf{r} - 2(\mathbf{r}^{\mathrm{T}} \mathbf{z}_{\mathrm{i}}) \mathbf{z}_{\mathrm{i}} \right)$$

$$\boldsymbol{z}_{i} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$$

Simulation Scenarios

Simulation parameters

- Representative for rocket
 bodies in the vicinity of ISS
- External disturbances are included into system dynamics
- Coplanar orbit with ISS, with 10 km smaller semimajor axis
- Equations of motion integrated using RK4 method

Table 3. Simulation parameters.

Parameter	Value		
m _c	20 kg		
$m_{ m d}$	200 kg		
A	4 m^2		
T	1.25 mN		
$\mathbf{M}_{\mathrm{res}}$	$\begin{bmatrix} 0.1 & 0.1 & 0.1 \end{bmatrix}^{T} A \cdot m^2$		
	[100 15 7]		
Ι	$15 \ 200 \ 10 \ \text{kg} \cdot \text{m}^2$		
10255	7 10 150		
$\begin{bmatrix} \boldsymbol{\epsilon}_0^T & \eta_0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$		
ω_0	$[0.5 - 0.5 - 0.5]^{T}$ rad/s		
\mathbf{r}_0	$\begin{bmatrix} -2171 & 6420 & 0 \end{bmatrix}^{T} km$		
\mathbf{v}_0	$\begin{bmatrix} -4.50 & -1.52 & 6.02 \end{bmatrix}^{T} \text{ km/s}$		

Results

Rendezvous

- Remover CubeSat rendezvous geometry with debris (top)
- Zoomed-in depiction of the rendezvous point of the CubeSat and debris object (bottom)

Maneuver Results

- Initial altitude of debris 390 km
- Transfer angle (ψ_0) is 10 degrees
- Number of revolutions = 17
- Transfer time = 26.2 h
- Fuel consumption = 10.1 g

Results

Detumbling

- Time history of the angular velocities during detumbling (top)
- Torque produced during the detumbling maneuver (bottom)

Maneuver Results

- Initial angular velocities (ω) reduced to zero
- Detumbling time = 1.87 h (1 h 52 m)
- Maximum allowable torque maintained throughout maneuver (i.e., 20 × 10⁻³ N · m)

Results

Deorbiting

- Time history of the orbit semimajor axis during deorbiting (top)
- Orbital trajectory of the CubeSatdebris during the last 10 days of the mission (bottom)

Maneuver Results

- Sinusoidal pattern attributed to the J₂ perturbations
- Deorbit altitude of 100 km
- Deorbitation time: 340 days
- Fuel consumption: 1.42 kg

Conclusions

- CubeSat-based concept for removal of debris in the vicinity of a space station
- 12-unit form factor with COTS components and low-thrust propulsion
- Two robotic manipulators for grasping debris
- Simulation completed of rendezvous, detumbling, and deorbiting
- Results show feasibility and reduction in debris lifetime

Houman Hakima houman.hakima@utoronto.ca Michael C.F. Bazzocchi michael.bazzocchi@utoronto.ca

Natural Lifetime of Debris Objects

