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Introduction

- Space manipulators have seen increased usage in orbit for various
applications

- Significant increase in objects in orbit, particularly debris items, and
interest in human and space asset protection

- Trend towards the miniaturization of spacecraft
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Space Debris Environment

~ Geostationary (GEO) ring .
Altitude: 35,786 km

Low-;Ea'fth okbit’ﬁ(LEO) cloud
~» Altitude: 100-2000 km

Image credit: Celestrak
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Spacecraft Design

Specifications

- Primarily designed based on the
utilization of commercially available
components.

« 12-unit form factor
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Simulation Specifications

- Key design driver: The type and size of the propulsion system that
fits the CubeSat bus.
— Busek lon Thruster — 3 cm (BIT-3)
— 8-kg solid iodine reservoir

Iodine reservoir (1.5 kg, expandable)

Table 1. BIT-3 technical specifications [14].

Parameter Value/Description

Propellant lodine. solid storage

System power 56-80 W

Input voltage 28 V(DC)

Propellant mass flow | 48 pg/s (nominal)

Thrust Upto 1.2 mN

Specific impulse (I,,) | Upto 2,300 s

Dry mass 1.4 kg (with gimbal)
1.28 (without gimbal)

Integrated gimbal 2-axis, £10°

Ion beam neutralizer
Command and control electronics




Spacecraft Design
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Robotic arm model in retracted (top) and extended (bottom) configurations.

Left: Remover CubeSat in the stowed configuration. Right: robetic arm extended.




Spacecraft Design

Mass budget

Table 2. Summary of remover CubeSat’s mass budget. The mass values include contingencies. Refer-
ences to the components’ data sheets are provided.

Subsystem Mass [keg] (% of total) | Key Components ( X Quantity)

Structures 3.51 (18.31%) Primary structure (obtained from Solid Edge); reaction wheel
plate (x1)

ADCS 1.42 (7.41%) Reaction wheel (3) [17]: Sun sensor ( x5) [18]; magnetome-
ter (1) [19]; magnetorquer ( x3): GPS receiver (x1) [20] and
antenna (1) [21]: computer ( x1) [22]

Power 2.25(11.74%) Battery (¢ 4) [16]: power board ( x 1); solar cells (x<46) [15]

C&DH 0.10 (0.52%) House keeping computer [22]

Communications 0.20 (1.04%) S-band transmitter ( x 1) [23] and antenna ( x2) [23]

Propulsion 9.50 (49.56%) lon thruster (1) [14]; an 8-kg iodine reservoir ( x 1)

Robotic arm 2.0(10.43%) Estimated mass (< 2)

Sub-total 18.98 (99.0%) -

Integration 0.19 (1.0%) Fasteners and wiring harnesses

Total 19.17 (100%)

Target 20.00 -

Margin 0.83 (4.33%) Margin (%) = L218¢t — Total , 15,

Target




Attitude and Orbital Maneuvers

Subsections:

Rendezvous maneuver
Detumbling maneuver
Deorbiting maneuver
Disturbance torques

Orbital perturbations
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Attitude and Orbital Maneuvers

Rendezvous Maneuver

Low-thrust trajectory design

Gauss’s variational equations

(GVESs) with steering angles

a3
a=2 FTcosasin,B

a = semimajor axis

T = specific thrust

a = zimuth steering angle

f = elevation steering angle
u = gravitational parameter

Transfer angle between the
CubeSat and the debris object

_u (1 1
V=7 a? a}

Y= Yy + 2nn

Y, = transfer angle
n = number of Earth revolutions

T—M 1 1
4y \a? a?
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Attitude and Orbital Maneuvers

Detumbling Maneuver
Attitude dynamics

w=I"1(—w*lw + 1)
Time optimal detumbling torque

lw
T=—""—T7
Te|| ™%

Kinematics of attitude motion

L]

€=—swietonw
1

ﬁz—zwxe

Deorbiting Maneuver

Final decaying orbit

as = Ro + 100 km, where R, = 6,378 km

Equations of orbital motion

=V V=T, 4T
Maximum thrust
T = L v T,

— omlv|| T

Orbit semimajor axis
7 viv

= —_— 8 —_— —
2E 2

a

IR

12



Attitude and Orbital Maneuvers

Disturbance Torques

Gravity-gradient torque
3
Tgg = T'urf,‘lrb

Magnetic disturbance torque

— X
Tmag = _Mrest

Geomagnetic field

By = Cyp;B;

(B cos dgec + Bgsindge.) cos apa — By sinaga
Bi = | (B, cosdgec + By sindgec) sin aga + By cos aga

B, sin d4ee — Bp cos 0dec

Orbital Perturbations

Atmospheric drag

1 A
f, = EpaCD % lv|[v

Gravitational perturbation due to
J> zonal harmonics coefficient

3uj2Ré r'z;
f]2 = 27’5 5 2 —1)r— Z(FTZi)Zi

zz=[0 0 1]T
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Simulation Scenarios

Simulation parameters

Table 3. Simulation parameters.

- Representative for rocket
] _ 0 Parameter Value
bodies in the vicinity of ISS
M. 20 kg
g 200 kg
- External disturbances are A 4m?
iIncluded into system dynamics r .25 mN
M; s [0.1 0.1 0.1]7 Am?
o _ 100 15 7
- Coplanar orbit with ISS, with I 15 200 10 | kg-m?
10 km smaller semimajor axis 710 150
led  no] 0 0 0 1]
_ o W 0.5 —0.5 —0.5]T rad/s
o Eq_uatlons of motion integrated ro [-2171 6420 0] km
using RK4 method Vo [—4.50 —1.52 6.02]" km/s
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Results

Rendezvous

Remover CubeSat rendezvous
geometry with debris (top)

Zoomed-in depiction of the
rendezvous point of the CubeSat
and debris object (bottom)

Maneuver Results

Initial altitude of debris 390 km
Transfer angle (y,) is 10 degrees
Number of revolutions = 17
Transfer time = 26.2 h

Fuel consumption =10.1 g
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Results

Detumbling
Time history of the angular
velocities during detumbling (top)

Torque produced during the
detumbling maneuver (bottom)

Maneuver Results

Initial angular velocities (w)
reduced to zero

Detumbling time = 1.87 h (1h 52 m)

Maximum allowable torque
maintained throughout maneuver
(i.e., 20 x 1073 N - m)
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Results

Deorbiting
- Time history of the orbit semimajor
axis during deorbiting (top)

- Orbital trajectory of the CubeSat-
debris during the last 10 days of
the mission (bottom)

Maneuver Results

- Sinusoidal pattern attributed to the
J> perturbations

- Deorbit altitude of 100 km
- Deorbitation time: 340 days
- Fuel consumption: 1.42 kg
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Conclusions

CubeSat-based concept for removal of
debris in the vicinity of a space station

12-unit form factor with COTS
components and low-thrust propulsion

Two robotic manipulators for grasping
debris

Simulation completed of rendezvous
detumbling, and deorbiting

Results show feasibility and
reduction in debris lifetime

Houman Hakima Michael C.F. Bazzocchi
houman.hakima@utoronto.ca michael.bazzocchi@utoronto.ca
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Natural Lifetime of Debris Objects
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