

The HERMES Mission: A CubeSat Constellation For Multi-Messenger Astrophysics

5th IAA on University Satellite Missions and CubeSat Workshop 28-31 January 2020, Roma

F. Scala¹, G. Zanotti¹, S. Curzel², M. Fetescu², P. Lunghi¹,

M. Lavagna¹, R. Bertacin³

¹Department of Aerospace Science and Technology, Politecnico di Milano ²Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano ³Italian Space Agency, ASI

28-31/01/2020

HERMES-TP Mission

HERMES-TP stands for

High Energy Rapid Modular Ensemble of Satellites – Technology Pathfinder

Mission objectives:

- detect and locate high-energy rapid transient in the universe, like gamma-ray bursts (GRBs)
- fast detection (< 10 s) and full sky coverage
- demonstrate the technological feasibility for GRBs localisation
- 2-year mission lifetime

2

Artist impression of a Gamma-Ray Burst. Credits: NASA.

5th IAA Conference Roma – HERMES Mission – Francesca Scala

POLITECNICO

HERMES-TP Mission

Mission requirements

Scientific Requirements	Value	
Accuracy in GRBs localisation	≤ 10 degrees	
Number of GRBs detected	short GRBs ≥ 10 per year long GRBs ≥ 70 per year	•
Triangulation	minimum 3 satellites	Scientific payload
Pointing error	≤ 5°	
Detection/Localisation delay time	few minutes	

Detector Orbital Constraints		Selected Orbit	
Altitude	≤ 600 km	550 km	
Inclination	≤ 20°	Equatorial	

POLITECNICO MILANO 1863

AS

HERMES

GRBs detector. Credit: INAF.

5th IAA Conference Roma – HERMES Mission – Francesca Scala 3

POLITECNICO MILANO 1863

HERMES-TP Mission

Mission challenges

GRBs localisation

Time delay comparison among detection epochs of the GRBs event occurred on at least 3 detectors spaced on different satellites

3U CubeSat platform size

- COTS components to reduce the mission cost
- no propulsive system for attitude control

HERMES

GRBs triangulation by three zenith pointing CubeSats.

5th IAA Conference Roma – HERMES Mission – Francesca Scala

4

POLITECNICO MILANO 1863

POLITECNICO

Spacecraft configuration

- The payload in the top unit
- The service module in the bottom part, divided in two sectors
 - The central part for PC104 standard components:

electronics, on-board computer, communication bundle

• The bottom part for actuator mounting for attitude control:

External view of HERMES-TP CubeSat

Design strategy

- Compactness of PC104 stack for space optimisation
- Components rationale disposition for harness length minimisation
- Avoid electrical and mechanical interference of service module components.

5th IAA Conference Roma – HERMES Mission – Francesca Scala

5

Service module design

HERMES-TP internal configuration

5th IAA Conference Roma – HERMES Mission – Francesca Scala 6

POLITECNICO

Service module design POLITECNICO HERMES **TT&C** architecture **TT&C** Functions **TT&C** Components **UHF/VHF** antenna & transceiver S-band GlobalStar **Telemetry and telecommand** • antenna antenna dipole antenna from/to the ground segment up to 35 kbps **GlobalStar** antenna & transceiver passive patch antenna **GRB early warning** transmission • of a trigger message within 30 min up to 72 bps alert in less than 3 min S-band antenna & transceiver Scientific observation data • active patch antenna **UHF/VHF** downlink(1 Gbit per day) 8 dBi gain antenna up to 700 kbps

5th IAA Conference Roma – HERMES Mission – Francesca Scala

POLITECNICO MILANO 1863

7

Service module design

On-board computer software design

Requirements

- Large flight-proven driver library available
- ECSS compliant
- Off-line test and simulation

Bright Ascension libraries and tools

- Licensing is per-satellite
- One license for both main and AOCS OBCs
- Development is under Eclipse
- CCSDS Packet Protocol

generationone

Flexible - component based

Robust - tested and proven code

Ease-of-use – API reference doc

5th IAA Conference Roma – HERMES Mission – Francesca Scala

Service module design Power generation

Power Budget

Scientific Requirements	Mean Power demand [W]	Peak Power demand [W]	Power generation source	
Scientific observation phase	12.2	22.7	Solar panels & Batteries	
S-band data download phase	16.2	28.8	Battery only (in eclipse)	

 Solar Panels Architecture selection Deployable solar panels Azur Space solar cell (30% efficiency) 		Trade-off analysis in zenith pointing	Petals Solar Panels	Wing Solar Panels
•	Maximum peak power ≥ 30 W	Mean Generated Power in light [W]	17.2	25.0
		EOL batteries DoD [%]	40	40

5th IAA Conference Roma – HERMES Mission – Francesca Scala

POLITECNICO MILANO 1863

15

Service module design

5th IAA Conference Roma – HERMES Mission – Francesca Scala 11

POLITECNICO MILANO 1863

POLITECNICO

28-31/01/2020

5th IAA Conference Roma – HERMES Mission – Francesca Scala

12

POLITECNICO MILANO 1863

Conclusions

HERMES-TP mission future developments

HERMES-TP has just closed its PDR (dec 2019)

- Service module design respects the mission requirements
- Final design refinement
- Procurement of the components on-going
- Preparing to the CDR for end of April 2020

Future developments

- Assembly, Integration and Verification Plan for the service module and the payload
- Hardware and Software Tests procedure
- Delivery of the protoflight model of the CubeSat
- Extension to a 3+3 Constellation in HERMES-SP

HERMES-SP Constellation. Credit: INAF

5th IAA Conference Roma – HERMES Mission – Francesca Scala

The HERMES Mission: A CubeSat Constellation For Multi-Messenger Astrophysics

5th IAA on University Satellite Missions and CubeSat Workshop 28-31January 2020, Roma

The HERMES-TP project has received founding by the National Ministry of Education, University and Research (MIUR)

Francesca Scala, Giovanni Zanotti, Serena Curzel, Mirela Fetescu, Paolo Lunghi, Michèle Lavagna, Roberto Bertacin

francesca1.scala@polimi.it, giovanni.zanotti@polimi.it, serena.curzel@polimi.it, mirela.fetescu@mail.polimi.it, paolo.lunghi@polimi.it, michele.lavagna@polimi.it, roberto.bertacin@asi.it

28-31/01/2020