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Problem Statement

Most of remote sensing and surveillance space missions are required to perform a
periodical sweep over a prescribed terrestrial area to detect eventual changes at
different times but with same viewing conditions

Flight altitude
320 km

The mission can be considered as the repetition of several identical tasks as the
spacecraft orientation should be cyclically modified to be identical during the data
acquisition process orbit after orbit
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Problem Statement (2)
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Objective of the research

Improve the attitude tracking performance of a CubeSat subjected to
environmental disturbance torques repeating the same orientation manoeuvre to
acquire scientific data in different orbits
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APPROACH
Due to the repetitive nature of Earth observation tasks, an effective improvement
in control system performance and autonomy can be obtained implementing
learning-based strategies
Why?
The system could learn from the data collected during previous iterative operations
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Satellite Numerical Model

The equations of motion of a spacecraft in space
environment are here derived according to a
classical Lagrangian approach

The motion of a generic point P is given by
'X,="'X,+R" (&)

The matrix R describes the rotation from the inertial
frame to the body-axes.

R=[R }0.0,0]R ). BIR)Q1,@)
LHLV-Body Orbital-LHLV Inertial-Orbital

By performing the relevant algebra, it is possible to obtain the non-linear dynamics of
spacecraft under the gravity and gravity gradient field effects.
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Environment Model
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Iterative Learning Control Concept

What strategy could be used?

The Iterative Learning Control (ILC) has been conceived for those robotic systems
executing the same task repetitively

%* Step 1: The robot at rest is waiting for
workpiece

s+ Step 2: The manipulator approaches the
workpiece

» Step 3: The part is moved to the desired
position

%+ Step 4: The robot returns to rest at the
initial condition
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Iterative Learning Control Concept (2)

The classical Arimoto-type iterative learning scheme aims at computing a control
action that leads the output to the desired value

u () = uk (@) + Kpee(t) ————=> y*t) > ya(t) as k- o

k
ut () ‘ 0
< Yd (t)
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Iterative Learning Control Concept (3)

Trial k-1 Trial k Trial k+1
Error
t-1 t t+1 t-1 t t+1 t-1 t t+1
Input
t-1 ¢t t+1 t-1 t t+1 t-1 t t+1 !
| Conventional Feedback : u**1(t) = f(e**1(t — 1)) I
Error
t-1 t-1 t t+1
Input
o
t-1 t t+1 t-1 t t+1 t-1 t t+1

ILC: uk*1(e) = uk(t) + f(e*(D))
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Current Cycle Feedback (CCF) ILC
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HOILC: This strategy utilizes more than one past error histories generated by
previous iterations control.
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Proposed Control Strateqgy
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Dynamics

The torque is the sum of two contributions: a Feedback Term and a

Feedforward Term
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Mission Definition
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DATA: The relevant data concerning the spacecraft used in the simulation is:

ORBIT — INERTIAL Symbol
. . H 0.2m
E tricit 0.001
: 4
Iyy 0.166 kg m?
| Raav | 22 deg 12z 0.166 kg m’
Argument of perigee ® 0 deg M 25 kg
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Results
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Results
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Final Remarks

An investigation on an intelligent control system to improve the attitude tracking
for an EO CubeSat in case of repetitive manoeuvres has been addressed in this

paper

* The possibility to use on-orbit available data, which can be memorized among
successive orbits, naturally calls for exploiting the gathered information to
improve the system performance.

* The combination of HOILC and FB control has proved to be able to address the
environmental torques as external disturbances

e The proposed controller proved to improve significantly the tracking
performance of the satellite just by using available in-orbit data as attitude
orientation and angular velocities. It should be noticed that no high
computational costs are related to such control system

* As future developments, an automated and optimized selection of learning
gains could be implemented to improve the autonomy of the controller
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Thank you for your attention!
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