

 5^{TH} IAA Conference on University Satellite Missions and Cubesat Workshop

Iterative Learning Control Processes On-Board CubeSats

F. Angeletti^a, P. Iannelli^a

^aDIMA, Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza

- **Objective of the Research**
- □ Satellite Numerical Model
- □ Iterative Learning Concept
- **Proposed Approach**
- Mission Definition
- □ Numerical Results
- Final Remarks

Most of remote sensing and surveillance space missions are required to perform a **periodical sweep** over a prescribed terrestrial area to detect eventual changes at different times but with same viewing conditions

The mission can be considered as the repetition of several **identical tasks** as the spacecraft orientation should be **cyclically** modified to be identical during the data acquisition process orbit after orbit

Problem Statement (2)

Objective of the research

Improve the attitude tracking performance of a CubeSat subjected to environmental disturbance torques repeating the same orientation manoeuvre to acquire scientific data in different orbits

APPROACH

Due to the repetitive nature of Earth observation tasks, an effective improvement in control system performance and autonomy can be obtained implementing learning-based strategies

Why?

The system could **learn** from the data collected during previous iterative operations

The equations of motion of a spacecraft in space environment are here derived according to a classical Lagrangian approach

The motion of a generic point P is given by

$${}^{I}X_{P} = {}^{I}X_{0} + \boldsymbol{R}^{T}(\boldsymbol{\xi})$$

The matrix \boldsymbol{R} describes the rotation from the inertial frame to the body-axes.

 $\mathbf{R} = \mathbf{R}_{3}(\phi, \theta, \varphi) \mathbf{R}_{2}(\alpha, \beta) \mathbf{R}_{1}(\Omega, \mathbf{i}, \sigma)$ LHLV-Body Orbital-LHLV Inertial-Orbital

By performing the relevant algebra, it is possible to obtain the non-linear dynamics of spacecraft under the gravity and gravity gradient field effects.

$$\begin{cases} \boldsymbol{M}\ddot{\boldsymbol{X}}_{p} + \boldsymbol{R}^{T} \left[\boldsymbol{\omega} \wedge \left(\boldsymbol{\omega} \wedge \boldsymbol{p} \right) \right] + \boldsymbol{R}^{T} \left(\dot{\boldsymbol{\omega}} \wedge \boldsymbol{p} \right) = \boldsymbol{F}_{Env} & \text{Environmental generalized forces} \\ p \wedge \boldsymbol{R}\ddot{\boldsymbol{X}}_{p} + \boldsymbol{J}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \wedge \boldsymbol{J}\boldsymbol{\omega} = \boldsymbol{C}_{Env} + \boldsymbol{u}_{C} & \text{Control Torques} \\ \end{cases} \\ \begin{cases} F_{Env} = F_{G} + F_{aero} \\ C_{Env} = C_{G} + C_{aero} + C_{magn} \end{cases} & \text{Gravity, Drag and Magnetic Field} \end{cases}$$

Environment Model

Gravity and Gravity Gradient	$F_{G} = -M\mu_{A} \frac{\hat{s}}{ X_{P} ^{2}} \text{with} \hat{s} = \frac{X_{P}}{ X_{P} } \qquad C_{G} = -\frac{\mu_{\oplus}\hat{s}}{ X_{P} ^{2}} (\tilde{p} \wedge \hat{s}) - \frac{3\mu_{\oplus}}{ X_{P} ^{3}} (\hat{s} \wedge J\hat{s})$
Atmospheric Drag	$dF_{aero} = \begin{cases} -\frac{1}{2}C_D \rho v^2 \left(\hat{n} \cdot \hat{v}_b\right) \hat{v}_b dA & \left(\hat{n} \cdot \hat{v}_b\right) > 0\\ 0 & \left(\hat{n} \cdot \hat{v}_b\right) \le 0 \end{cases}$ $C_{aero} = \sum_{i=1}^6 r_i \wedge F_{aero_i} = \frac{1}{2}C_D \rho v^2 \sum_{i=1}^6 A_i \left(\hat{n}_i \cdot \hat{v}_b\right) \hat{v}_b \wedge r_i$
Magnetic Field	$B_{earth} = -\nabla V$ $V(r, \theta, \phi, t) = R_e \sum_{n=1}^{N} \sum_{m=0}^{n} \left(\frac{R_e}{r}\right)^{n+1} [g_n^m(t)\cos(m\phi) + h_n^m(t)\sin(m\phi)] P_n^m(\cos\theta)$ $C_{magn} = m_{sat} \wedge B_{earth}^B$ $m_{sat} = c \ 10^{-3} \ m_{sc}$

What strategy could be used?

The Iterative Learning Control (ILC) has been conceived for those robotic systems executing the **same task repetitively**

- Step 1: The robot at rest is waiting for workpiece
- Step 2: The manipulator approaches the workpiece
- Step 3: The part is moved to the desired position
- Step 4: The robot returns to rest at the initial condition

The classical Arimoto-type iterative learning scheme aims at computing a control action that leads the output to the desired value

Iterative Learning Control Concept (3)

Current Cycle Feedback (CCF) ILC

$$\tau_{fb}^{k}(t) = K_{P} \left(\Theta_{des} - \Theta^{k}(t) \right) + K_{D} \left(\omega_{des}(t) - \omega^{k}(t) \right)$$

$$\tau_{ILC}^{k} = \tau^{k-1} + L \left(\sum_{i=1}^{2} l_{i} \left(\Theta_{des} - \Theta^{k-i}(t) \right) \right) + D \left(\sum_{i=1}^{2} d_{i} \left(\omega_{des}(t) - \omega^{k-i}(t) \right) \right) \qquad \sum_{i=1}^{2} l_{i} = \sum_{i=1}^{2} d_{i} = 1$$

HOILC: This strategy utilizes more than one past error histories generated by previous iterations control.

Proposed Control Strategy

DATA: The relevant data concerning the spacecraft used in the simulation is:

ORBIT	Symbol	Value	INERTIAL	Symbol	Value
Eccentricity	e	0.001	Dimensions	Н	0.2 m
	C C	6074		W	0.2 m
Semi-major axis	a	6871 km		D	0.2 m
Inclination	i	77.6 deg	Inertia	Ixx	0.166 kg
DAAN	0	- 		Іуу	0.166 kg
KAAN	52	zz deg		Izz	0.166 kg
Argument of perigee	ω	0 deg	Mass	М	25 kg

Results

Results

An investigation on an intelligent control system to improve the attitude tracking for an EO CubeSat in case of repetitive manoeuvres has been addressed in this paper

- The possibility to use on-orbit available data, which can be memorized among successive orbits, naturally calls for exploiting the gathered information to improve the system performance.
- The combination of HOILC and FB control has proved to be able to address the environmental torques as external disturbances
- The proposed controller proved to improve significantly the tracking performance of the satellite just by using available in-orbit data as attitude orientation and angular velocities. It should be noticed that **no high computational costs** are related to such control system
- As future developments, an automated and optimized selection of learning gains could be implemented to improve the autonomy of the controller

 5^{TH} IAA Conference on University Satellite Missions and Cubesat Workshop

Thank you for your attention!

