CubeSat Constellation Deployment Strategies

Christophe Vakaet

Delft University of Technology

4th IAA Conference on University Satellite Missions and CubeSat Workshop December 6th, 2017

Who am I?

- MSE Student, Control and Simulation, Delft University of Technology, the Netherlands.
- Methodology to determine the optimal deployment strategy for a CubeSat Constellation
- Outline:
 - The problem
 - The methodology
 - Results & discussion

The Problem

- How to design the deployment strategy of a CubeSat constellation?
- CubeSat constellation:
 - Relevance
 - Less reliable individual satellites
 - No individual orbit insertion
 - Limited maneuverability (fuel and performance)
 - Stochastic problem
- Use: improve operational performance through clever design

Source: gps.gov

- Monte Carlo approach:
 - Create a finite number of realizations
 - Simulate each realization
 - Statistically analyze the performance of the realizations

- Satellite lifetime
 - Random sample from reliability model
 - Reliability model
 - Component failure rate database
 - Historical flight data
 - Historical flight data
 - Limited availability
 - Technological advancements
 - Design and manufacturing quality
 - No partial failures
- Right ascension of ascending node
 - Important parameter
 - Initially determined by launch
- Fuel

Source: M. Langer

- Maneuver
 - Nodal precession
 - Fuel consumption
- Strategy
 - Equal distribution
 - Parking orbit
 - Creative solution

Initial maneuver drift, fuel, intended location

Replace: drift, fuel, intended location

)elft

Results and Discussion

- Any parameter simulated for each realization
- Example mission:
 - 2 times 12 satellites inserted at opposite RAAN
 - Walker (55.5:6/6/2) constellation*
 - $\dot{\Omega}$: 0.33°/day, ΔV : 235 m/s

Satellite	∆v [m/s]	Deployment procedure after launch	
	210.2	1. Hohmann transfer (520km→435km)	
lower		2. 6 month drifting	
		3. Hohmann transfer (350km→520km)	
upper	235.1	1. Hohmann transfer (520km→670km)	
		2. inclination change $(55^\circ \rightarrow 55.37^\circ)$	
		3. 6 months drifting	
		4. inclination change (55.37° \rightarrow 55°)	
		5. Hohmann transfer (669km→520km)	

Source: Hyperion Technologies

Results and Discussion

- Example mission
 - Case 1: Equally distribute (redundancy)
 - Case 2: Parking orbit for replacements

Case	Success rate	Time to success	
	(%)	mean (days)	90th percentile (days)
1	48	183	183
2	83	251	362

Day 0 • Operational • Failed

Results and Discussion

Results and Discussion

- Example mission
 - Case 1: Equally distribute (redundancy)
 - Case 2: Parking orbit for replacements

Case	Success rate	Time to success	
	(%)	mean (days)	90th percentile (days)
1	48	183	183
2	83	251	362

Result and Discussion

- Future:
 - 1. Apply to more complex constellations and deployment strategies
 - 2. Model maintenance launches
 - 3. Include partial failures
 - 4. Validate

Questions

- More information, or want to work with me?
 - IAA-AAS-CU-17-06-03
 - Talk to me

