

Lessons Learned from BIRDS-I Constellation Mission

Mengu Cho¹, George Maeda¹, Sangkyun Kim¹, Hirokazu Masui¹ and ²BIRDS partners

 ¹Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology, Kitakyushu, Japan
 2 All Nations University College, Ghana; National University of Mongolia, Mongolia; Federal university of Technology Akure, Nigeria; King Mongkut's University of Technology North Bangkok, Thailand; & National Cheng Kung, Taiwan.

December 6, 2017

4th IAA Conference on University Satellite Missions & CubeSat Workshop Rome, Italy

Countries that launched 1-10kg satellites

- Satellites affordable even to universities, small business, developing/ emerging countries
- Interest in capabilities for basic space technology development

Demands for Capacity Building

- Small satellites are ideal entrance for developing countries to join the space sector
- Demands for capacity building through small satellites
- Various training programs via agencies, companies and universities in space faring countries
 - Often tied with sales of satellites (big or small)
 - Not successful, especially if the training is done in agencies or companies
 - Lack of hands-on experience
 - Not covering the entire system life cycle of satellite
- Key points
 - Experience the complete cycle of designing, building, testing and operating through hands-on
 - Strategy for **sustainability** after the training

Kyushu Institute of Technology (Kyutech) Space Engineering International Course (<u>SEIC</u>)

- Started in April 2013 at Graduate School of Engineering, Kyutech
- Research toward a Master or Doctoral degree
- On-the-job training such as space environment testing workshop
- Project Based Learning (PBL) through a space project
- Lectures in English
 - Space Systems Engineering, Satellite Engineering, Space Environment, Environment Testing, Power System, Structure and Material, Dynamics, Propulsion, Plasma, Semi-conductor, and more

As of October 2017, 19 countries 64 students (24 Japanese, 40 foreign students)

UN/Japan Long-term Fellowship Programme

- A part of United Nations Office of Outer Space Affairs (UNOOSA) Basic Space Technology Initiative (BSTI) since 2011
- 2011: Doctor on Nano-Satellite Technologies (DNST) initiated at Kyutech
 - 2 Doctoral students selected per year
 - Kyutech provided financial support
- 2013: <u>Post-graduate study on Nano-Satellite Technologies (PNST)</u> initiated
 - 2 Masters students selected per year
 - 4 Doctoral students selected per year
 - MEXT (Japanese government) fellowship support
- 2018 2020: PNST 2nd term
 - 3 Masters students selected per year
 - 3 Doctoral students selected per year
 - MEXT (Japanese government) fellowship support
 - Application Deadline January 28, 2018

Kyutech Satellite Heritage

HORYU-1 (1U) 2006-2010 Not launched

HORYU-II 2010-2012 Launched on 2012/5/18

Shinen-2 2013-2014 Launched on 2014/12/03

HORYU-IV 2013-2016 Launched on 2016/02/17

Ł

Tenkou

JAPAN Mongolia Bangladesh Mazaalai TOKI Ghana Nigeria Nigeria Edusat1 GhanaSat 国立大学法人 九州工業大学

AOBA VELOX-III 2014-2016 ISS release 2017/01/19

BIRDS-I constellation 2015-2017 ISS release on 2017/07/07

To be launched

AOBA VELOX IV

7

HORYU-IV Project (2013~)

44 members from 18 countries First and second generations of PNST/SEIC students

BIRDS Program (2015~)

Satellite program for non-space faring countries

Mission Statement

By successfully building and operating the first national satellite, make the foremost step toward indigenous space program at each nation.

BIRDS-I (2015-2017) NIGERIA BANGLADESH JAPAN GHANA MONGOLIA THAILAND TAIWAN . پ BIRDS-II (2016-2018) JAPAN BHUTAN MALAYSIA PHILIPPINE BIRDS-III (2017-2019) Sri Lanka Nepal JAPAN

Program features

- 1U CubeSat constellation of
 - BIRDS-I: 5 satellites by Bangladesh*, Ghana*, Japan, Mongolia*, and Nigeria
 - BIRDS-II: 3 satellites by **Bhutan***, Malaysia and Philippine
 - BIRDS-III: 3 satellites by Japan, Sri Lanka* and Nepal*
- Made by students at Kyutech
- 2 years from concept design to disposal
- Released from ISS
- Network operation by multiple ground stations

* First satellite for the country

Project Organogram

BIRDS partners

- Except Bhutan, all the BIRDS partners are universities
- Each partner who owns a satellite pays
 - Launch cost (3,000,000 yen)
 - Hardware cost
 - Student cost (at least two students sent to Kyutech)
 - Ground station cost in each country
- Each partner is committed to initiate space education/ research program
 - BIRDS graduates form its core

Strategy for sustainability

- BIRDS program aims at fostering university space programs in non-space faring countries
- Often a national space program suffers disruption because of political and economical disturbance
- University space program is immune to the external disturbances.
- To start with the minimum budget, a university is an ideal place.
 - CubeSat chosen as a training platform.
 - Affordable enough at university budget level
- The university space program cannot grow forever.
 - Need to hand over the national space program to the government or companies
- Even after handing over the big projects to the outside body, the university still can continue its own space research and education
 - Need to provide the human resource to the national space program 13

Educational aspects

- A short-tem goal
 - Build and operate satellites
 - Give the students confidence they can do it
- Long-term goal
 - Students initiate their own space program in home countries
 - The full mission success
 - The former students successfully build and operate the second satellite in their home countries
- Let students learn the entire processes of a satellite project from beginning to end
 - Witness each decision process and make decisions by themselves
- Fit the project within the degree timeline. 2 years longest
 - Selected 1U CubeSat and ISS launch as a platform

System Configuration

- Modularized and Less harness design.
- All satellites share same frequency (UHF/VHF).
- Using Backplane style used in UWE-3.
- Multi functional single board.

BIRDS-I Configuration

- Deployable UHF_9600bps
- Patch UHF_1200bps
- **(a)** VHF Patch Antennas;
- Battery (3 series 2 parallel)
 - Ni-MH batteries, 10 solar cells;
- Passive attitude control system
 - hysteresis damper and
 - permanent magnet;

BIRDS ground station network

BIRDS constellations are operated by a network of GSs in BIRDS partners

17

BIRDS ground station network

Satellite missions BIRDS-I BIRDS-II

- Take a picture of participating countries
- Digi-singer for outreach
- Single Event Latch-up detection
- Determination of satellite precise location
- Atmospheric density measurement
- Constellation operation via ground station network

Patch antenna

- Take a picture of participating countries
- Packet communication relay between amateur radio people
- Store & Forward
- Demonstration of COTS GPS device
- Single Event Latch-up Detection
- Measurement of Earth magnetic fields

Deployable antenna

System Development

Lean Satellite Approach

- The BIRDS program experiments the lean satellite approach
 - Lean satellites seek to deliver value to the customer (the enduser or the purchaser) or the stakeholder at minimum cost and in the shortest possible schedule by minimizing waste.
- When the students continue the space program in their home country, they have to adopt a lean approach so that the program can run with a small team and a minimum cost.
- In the BIRDS program, the overall satellite development activity can be done within a radius of 30 m.
- The students are encouraged not to use e-mail unless they need to broadcast to all the team members.

Waste minimization

• Minimize waste of "waiting" and "moving"

BIRDS Network

- Human network
 - Formed during intensive two years project by "living under the same roof"
 - Assist the infant space programs survive the hard time
- Ground station network
 - The backbone of the inter-university network
 - Enable constellation operation in future
 - Space research using a small satellite constellation generating scientific outputs

Cross-Border Inter-University Collaboration

- Mission
 - "To advance the peaceful use of outer space for the benefit of humanity by using a network of universities conducting space research and education"
- Each member institution of the BIRDS Network will launch its own space research and education program.
- Annual workshops
 - Japan (2016), Ghana (2017), Mongolia (2018), Bangladesh (2019) and so on...

BIRDS workshop 2017 @Ghana

Outreach Activities

2017 Diversity Award

Satellite delivery on February 8, 2017

Launched successfully to ISS on June 4, 2017

Released successfully to orbit from ISS on July 7, 2017

BIRD-M JG6YJQ / BIRD-G JG6YJP CW Beacon

② FRIDAY, JULY 7, 2017 ▲JA0CAW ● LEAVE A COMMENT

21:12 UTC

Heard beacon signals from all the five satellites

Patch antenna gain was much worse than expected

Baterry Voltage [mV]

As of September 20, trying to establish uplink communication

GEDC Airbus Diversity Award

BIRDS-I project manager, Tejumola Taiwo (Nigeria)

BIRDS project won 2017 GEDC (Global Engineering Deans Council) Airbus Diversity Award out of 45 entries from 18 countries as a successful example of using **diversity** to effectively conduct **engineering education**

So many news coverage

BIRDS-II and BIRDS-III status

- BIRDS-II
 - Reflect many lessons learned from BIRDS-I
 - Currently EM phase
 - FM completed in early 2018
 - Released from ISS in spring 2018
- BIRDS-III
 - Kicked-off in October 2017
 - Japan, Sri Lanka and Nepal

Engineering Model of BIRDS-II

Preparation for future

- Once students go back to the home countries, they will face
 - Huge expectation from all over the country as a space expert
 - Asked what the country should do to advance the country's space program
- They have
 - Chance
 - of achieving what you want
 - Risk
 - of not meeting the people's expectation
- Students need to prepare in advance
- 6-month long sessions to prepare 10 year strategic space plan of each country to be presented to stakeholders
- Combined with space policy & law

Team Future plans

- Students returned back home and became faculty members in their countries
 - Regenerate experience and innovative ideas at home.
 - Learn to use limited resources at home.
- Make the second satellite at home.
 - Ghana, Mongolia, Bangladesh
 - Do not lose momentum
- Support one another and share ideas.
 - Build on the network established.
 - Share best practices and lessons learned.

BIRDS-I lessons learned

- As a constellation satellite program
 - Thorough design verification before moving to flight model
 - Quality assurance of each flight model
 - Decision on whether making every stakeholder happy or guaranteeing that at least one satellite will work
 - Scale merits lower the hardware cost
- As an international satellite program
 - Proper supervision to avoid crucial conflict of cultural backgrounds among team members
 - Careful about different commercial practices in each country
 - Different levels of frequency regulation and space treaty ratification

BIRDS-I lessons learned

- As an educational program
 - It was a very good educational opportunity for students.
 - But, to make the BIRDS program as a sustainable educational program to be done by a university
 - 1. Need to lower the hardware cost further
 - Fix the satellite bus design
 - 2. Need to lower the burden on each faculty
 - 3. Need to increase the number of students who can benefit
 - Currently only 2~3 students per satellite
 - Increase to 12 students per satellite
 - 4. Need to have documents to be used as textbooks
- These points will be addressed from BIRDS-III and -IV

Conclusion

- BIRDS program is a unique capacity building program to foster space development and utilization capability in non-space-faring countries by
 - Making students experience the entire processes of a satellite project
 - Making networks to support the cross-border inter-university collaboration on space research and education
- The mission success criteria of BIRDS program
 - After graduation, students succeed in developing and operating the second satellite in their home country
 - BIRDS network will assist the infant space programs each other
- BIRDS workshop to be held once every year in member countries, Mongolia (2018), Bangladesh (2019)