A Constellation of CubeSats for Amazon Rainforest Deforestation Monitoring

Fernanda Cyrne Pedro Beghelli Iohana Siqueira Lucas Meneses Rafael da Silva Chantal Cappelletti

December 7, 2017

Deforestation

Mission Goals

Requirements

Orbit Char acteristics

Payload

Satellite Bus

Actuation System

Next Step

Conclusions

1 Amazon Rainforest

2 Deforestation

3 Mission Goals

4 Requirements

5 Orbit Characteristics

6 Payload

7 Satellite Bus

8 Actuation System

9 Next Steps

Conclusions

Amazon Rainforest

- Deforestation
- Mission Goals
- Requirements
- Orbit Characteristics
- Payload
- Satellite Bus
- Actuation System
- Next Steps
- Conclusions

- The Amazon represents over half of the planet's remaining rainforests.
- The largest and most biodiversity tract of tropical rainforest in the world.
- Actually is monitored by brazilian government using a free database.

Figure: Limits of Amazon rainforest.

Deforestation

Amazon Rainfores

Deforestation

Mission Goals

Requirements

Orbit Char acteristics

Payload

Satellite Bus

Actuatior System

Next Steps

Conclusions

Figure: A comparison between the years 2002 and 2017.

Deforestation

- Mission Goals
- Requirements
- Orbit Char acteristics
- Payload
- Satellite Bus
- Actuation System
- Next Steps
- Conclusions

- Develop a new system to identify new methods of deforestation in Brazilian Amazon Rainforest.
- Advance the capability of University of Brasília to design, develop and operate small satellites.
- Provide educational opportunities related to aerospace missions, satellites design and project management.

- Deforestation
- Mission Goals
- Requirements
- Orbit Char acteristics
- Payload
- Satellite Bus
- Actuation System
- Next Steps
- Conclusions

- A functional spacecraft shall be designed.
- Minimum spatial resolution less then 16 meters.
- RGB and NIR range.
- Maximum revisit time of 16 days.
- Images taken from the same place shall have similar illumination conditions.
- Low cost mission

Orbit Characteristics

Rainforest Deforestati Mission Goals Requiremen

Orbit Characteristics

Payload

Satellite Bus

Actuatior System

Next Steps

Conclusions

• The resultant orbit is a sun-synchronous circular orbit.

• Will be necessary 10 satellites in the constellation, that provides 13 days of revisit time.

Table: Orbital characteristics.

Altitude	500 <i>km</i>	
Inclination	97.40 <i>degrees</i>	
Orbital Period	95.55 <i>min</i>	
Swath	7.7 <i>km</i>	
Spatial Resolution	15 <i>m</i>	
Orbital Velocity	7.53 <i>km/s</i>	

Payload

Rainforest Deforestat

Mission Goals

Requirements

Orbit Characteristics

Payload

Satellite Bus

Actuatior System

Next Steps

Conclusions

 The selected payload is a Multispectral Camera -Red/Green/Blue/NIR - USB3, from Spectral Devices, that attends all requirements.

Table: Specifications of the payload

Interface	USB3	
Maximum Bit Depth	12 bits	
Number of Channels	4 bands	
Pixels Per Channel	512 <i>×</i> 512	
Dimensions	52 <i>x</i> 46 <i>x</i> 56 <i>mm</i> ³	

Payload

Amazon Rainforest

Deforestation

Mission Goals

Requirements

Orbit Char acteristics

Payload

Satellite Bu Actuation System Next Steps

Conclusions

Table: Results in the calculation of data generated

Data Generation Characteristics				
V_{g}	6.98 <i>km/s</i>			
D_g	7.65 <i>Gb/orbit</i>			
Ň	15.07 <i>orbits/day</i>			
D_T	115.29 <i>Gb/day</i>			

as V_g = relative ground velocity D_g = generated data per orbit N = number of orbits per day D_T = generated data per day

Structure

Amazon Rainforest

Deforestation

Mission Goals

Requirements

Orbit Char acteristics

Payload

Satellite Bus

Actuation System Next Steps

Conclusions

Figure: CubeSat 3U

Rainforest Deforestatio

- Goals
- Requirements

Orbit Characteristics

Payload

Satellite Bus

Actuation System

Next Steps

Conclusions

- The reaction wheel selected, based on the sum of disturbance torques from table, was CubeWheel Small from CubeSpace.
- A magnetorquer will be used to de saturate the reaction wheels and de tumbling. We selected a magnetorquer board from ISIS.

Table: Disturbance Torques acting on the CubeSat.

Disturbance Torque	Magnitude (Nm)	
Gravity Gradient	$2.1356 \cdot 10^{-8}$	
Solar Radiation	$2.1872 \cdot 10^{-10}$	
Aerodynamic	$1.7386 \cdot 10^{-7}$	
Magnetic Field	$9.7856 \cdot 10^{-6}$	

Actuation System

- Rainforest Deforestati Mission
- Requirements
- Orbit Characteristics
- Payload
- Satellite Bus
- Actuation System
- Next Steps
- Conclusions

OBDH

Faculdade UnB Gama 🕐

Deforestation

Mission Goals

Requirements

Orbit Char acteristics

Payload

Satellite Bus

Actuation System

Next Steps

Conclusions

• This system will be composed by solar panels as sources, rechargeable batteries, a battery charger regulator and a system distribution.

Table: Power Budget

	Component	Cycle %	Peak (mW)	Average (mW)
	Radio Receiver	100	5500	5500
us	Radio Transmitter	5	11000	550
	Radio Beacon	100	300	300
	OBC	100	660	660
	Payload	5	4500	225
s	Reaction Wheels	30	600	180
ı s	Sun Sensor	100	13.4	13.4
	Magnetorquer	10	1200	120
	Thruster	10	40000	4000
	Total		= 63773.4	= 11548.4

Faculdade UnB Gama 👔

Deforestation

Mission Goals

- Requirements
- Orbit Char-
- Payload
- Satellite Bus
- Actuation System
- Next Steps
- Conclusions

- More detailed description of subsystems.
- Launch and Ground Station selection.
- Complete documentation of phase B.
- Funding to initiate phase C.

- Deforestation
- Mission Goals
- Requirements
- Orbit Char-
- _ . . .
- Actuation
- System
- Next Steps
- Conclusions

- Nowadays monitoring satellites can not identify the new trend of deforesting small areas.
- 10 CubeSats in a constellation will be enough to achieve requirements.
- Revisit time of 13 days and spatial resolution of 15m.
- The project presented here was just pre phase A, phase A and beginning of phase B.

Rainforest Deforestat Mission

Requirements

Orbit Char acteristics

Payload

Satellite Bus

Actuation System

Next Steps

 $\mathsf{Conclusions}$

Thank You!

fernandacyrne@gmail.com beghelli.pedro@gmail.com

