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Testbed overview

Testbed characteristics

Technical specifications

Hardware
IMU (3-axis mag, gyro
and accel)
3 Movable Mass Units
Embedded µcontroller
3 Reaction wheels

Structure
Air bearing
Helmholtz cage

Figure: LAICA nanosatellite testbed.

R. C. Silva, S. Battistini, R. A. Borges, C. Cappelletti (UnB)EKF Balancing December 7, 2017 3 / 19



Introduction Modelling The Extended Kalman Filter Methodology Results Conclusion

Testbed overview

The balancing problem

Some facts

Although limited in the roll and pitch axis to ±45◦, the testbed has
3 rotational Degrees of Freedom (DOF);

Considering the testbed is not a symmetrical rigid body, its mass
distribution results in a Center of Mass (CM) displaced from its
Center of Rotation (CR);

This displacement results in a undesirable torque which affects the
actuation system.

Solution?

Discovering the exact position of the Center of Mass (CM) and controlling
its position by moving some masses on the testbed.
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Testbed overview

The balancing problem

How is it done?
In this work, in order to discover the position of

the Center of Mass (CM), the testbed is excited

with the torque generated by the reaction wheels

mounted on it. Then, with the knowledge of this

input torque and measuring the angular

velocities performed by the testbed during this

operation, the Extended Kalman Filter (EKF) is

used in order to estimate the testbed parameters

given by R, the CM offset vector, and J, the

inertia tensor given by a 3× 3 matrix.

Figure: 3-axis setup of
reaction wheels
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Dynamic equations and variable definitions

Rigid body dynamics

Euler equation

dH

dt
= Jω̇ + ω × Jω + (ḣ + ω × h) = R×mgb + T , (1)

J - the inertia tensor of the whole system

H - total angular momentum of the system

h - momentum generated by the reaction wheels

m - the total mass of the system

T - the total external torque disturbances

R - the CM offset vector

gb - the local gravity (in body frame)
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Kinematic equation

Kinematic equation

Euler rates for the ZYX (or 3-2-1) rotation sequence φ̇

θ̇

ψ̇

 =

 1 sin(φ) · tan(θ) cos(φ) · tan(θ)
0 cos(φ) −sin(θ)
0 sin(φ)/cos(θ) cos(φ)/cos(θ)

 ·
 ωx

ωy

ωz

 (2)

φ - roll angle of the testbed

θ - pitch angle of the testbed

ψ - yaw angle of the testbed

ωx - angular velocity of the testbed in the body x-axis

ωy - angular velocity of the testbed in the body y-axis

ωz - angular velocity of the testbed in the body z-axis
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Augmented state equation

Augmented State Equation

The x state vector

For the EKF algorithm, the state of the system is selected as being
x1 = [ωx ωy ωz ]T .

Using the joint state equation procedure, the state is augmented to
x = [x1 x2]T , where x2 = [Jx Jy Jz Jxy Jxz Jyz mRx mRy mRz ]T .

Since x2 contains the parameters to be estimated, which are constant,
the joint state equation becomes:

ẋ =

[
ẋ1

ẋ2

]
= F (x1, x2,u) =

[
f (x1, x2,u)

0

]
, (3)

where f (x1, x2,u) = ω̇ = J−1(Jω × ω + R ×mg − (ḣ + ω × h)) and
u = −(ḣ + ω × h).
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Reference system

Rotation Sequence

The ZYX or 321 sequence

Figure: Inertial frame (centered at
the CR of the Air Bearing).

Zb

Yb

Xb

Yaw

Pitch

Roll

Figure: Body frame (centered at the
CR of the Air Bearing, but fixed to
the testbed).
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The LAICA testbed parameters

Inertia tensor, mass and unbalance vector

Table: Testbed parameters used in the simulation.

J (kg ·m2)1 Mass (kg) Unbalance vector2 (10−3m) 0.265 0 0

0 0.246 0

0 0 0.427

 14.307
[
−1 −1 −5

]T
Table: Standard deviation of the noise in the gyro readings

Body axis Standard deviation (rad/s)
X 0.0026
Y 0.0049
Z 0.0031

1The Inertia Tensor (J) and the Mass (m) of the platform values in the table are the
same as those estimated for the actual testbed.

2The shown values for the unbalance vector components were arbitrarily assumed for
the simulation (a reasonable value based on previous experiments).
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Filter equations

Simulation of the dynamic and kinematic equations φ̇

θ̇

ψ̇

 = A(φ, θ, ψ)3×3 · x1 (4)

 φ
θ
ψ


new

=

 φ
θ
ψ


old

+ A(φ, θ, ψ)3×3 · x1 · dt (5)

ẋ1 = J−1(Jx1 × x1 + R ×mg − (ḣ + x1 × h)) (6)

xnew = xold + ẋ · dt (7)

z = H · x + w , (8)

where w is the measurement noise, dt is the step size, which was selected
as 0.0001s and the measurement matrix H is given by H = [I3×3 03×9]T .
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Filter equations

Execution of the filter equations

F =
DF

Dx

∣∣∣∣
x̂

+ [I ]12×12 (9)

Ṗ = F · P + P · FT + L · Q · LT − P · HT/R · H · P (10)

Pnew = Pold + Ṗ · dt (11)

K = P · HT · R−1 (12)

ˆ̇x =

 x̂1

06×1

03×1

 (13)

ˆ̇xnew = ˆ̇xold + K · (z − H · ˆ̇x) (14)

x̂new = x̂old + ˆ̇x · dt (15)
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The DF/Dx jacobian

The DF
Dx jacobian

The DF
Dx jacobian is a 12× 12 matrix given by

DF

Dx
=


∂F1
∂x1

· · · ∂F1
∂x1

...
. . .

...
∂F12
∂x1

· · · ∂F12
∂x12

 = [Aij ]12×12 =

[
∂Fi
∂xj

]
12×12

, i , j ∈ {1, ..., 12}

(16)
and, after simplification,

DF

Dx

∣∣∣∣
x̂

=

[
∂F
∂ω

∂F
∂J

∂F
∂ mR

09×12

]∣∣∣∣
x̂

, (17)

where ∂F
∂ω , ∂F

∂J and ∂F
∂ mR are 3× 3, 3× 6 and 3× 3 matrices, respectively.
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Complex Step Differentiation

Complex Step Differentiation idea for the DF
dx calculation

The numerical differentiation problem

One simple discrete method for numerical differentiation is given by

df

dx
≈ f (x + h)− f (x)

h
, where h is the step size. (18)

However, when the step size h becomes too small, the procedure results in
erratic values, mainly as consequence of subtraction errors.

Solution? Complex step differentiation!

Through complex step differentiation, the same differentiation may be
accomplished using the approximation

df

dx
≈ Im[f (x + ih)]

h
, where i is given by i2 = −1. (19)
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Simulation and initial parameters

The procedure for running the EKF is given by the following steps:

1 The simulator is configured with the testbed known parameters (the
ground truth parameters).

2 The dynamic model is simulated. The torque generated by the
reaction wheels and initial conditions of the testbed are given as
input. The simulator outputs the angular velocities of the testbed.

3 Noises are added to these angular velocities signals to simulate real
measurement conditions.

4 With only the knowledge of these input and output signals, the EKF
algorithm is executed. The estimated x̂2 vector is collected after the
algorithm converges.

5 Estimated x̂2 parameters are compared with the ground truth x2

parameters.
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Results

Figure: Convergence of the estimated inertia tensor components.
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Results

Figure: Unbalance vector components3 (dashed = real, continuous = estimated).
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3The graph shows the unbalance components scaled by the m factor (testbed mass).
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Results

Within 5 secs the error between the known (ωz) and the estimated (ω̂z)
angular velocities stays in the ≈ ±0.001rad/s range.
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Figure: Evolution of the difference ωz − ω̂z
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Conclusions

1 This work presented a testbed being developed at the LAICA
laboratory in the University of Braśılia for testing attitude
determination and control systems (ADCS) of nanosatellites, e.g.
CubeSATs.

2 The balancing problem was presented, as well as the modelling for
one solution for this problem, based on reaction wheel actuation and
on the use of the Extended Kalman Filter.

3 The results shown indicate that the proposed method is adequate for
solving the balancing problem.

4 Future works include discretizing the EKF and embedding it on the
board computer of the real testbed.
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