
IAA-AAS-CU-17-06-07

Development of a Flexible Nanosatellite Mission Control 

System Using Agile Development Methodology

Richard Duke, Brian Stewart, Ben Taylor, Christopher P. Bridges, Simon 

Fellowes and Guglielmo Aglietti

r.duke@surrey.ac.uk

4th IAA Conference on University Satellite Missions and Cubesat Workshop

4th December – 7th December 2017

Rome, Italy



Introduction

2

Previous University of Surrey Satellites based around a custom design for 

each individual satellite.

In 2015 a new system was required for multiple missions. It was an ideal 

opportunity to consolidate support for;

 Spacecraft operations

 S/C development and testing

 Communications research

 University and amateur cubesat community

 Teaching 



Requirements

3

Summary of main requirements:

 Multiple simultaneous connections needed

 Easy to adapt to different spacecraft

 Multiple users; operators; AIT engineers, System Engineers; Students

 Mission critical operations vs accessibility for students 

 Varying levels of automation (teaching vs lower operations cost)

 Expandable for the future



Data Connections

4

3 Metre Dish

Dual VHF / UHF

Amsat Community

Mission Operations Centre

AIT

Software Testbeds

Partner Groundstations



Development Strategy

5

Agile Development strategy used

 It aims to produce good results by promoting close teamwork, over fixed processes.

 It values working software (especially early prototypes) over heavy documentation.

 It integrates the customer or end user during the development phase and welcomes

input and change requests even late in the development to make sure that the output

works well.

 It makes the assumption that that requirements and plans will change and therefore

this can be expected and planned for.

Especially suitable when full requirements may not be fully described at the start of the 

project

Empowers developers and concentrates focus on good engineering rather than process



Architecture

6

With agile development the architecture of the system is critical to make 

sure it can cope with changing requirements.

We placed a relational database (PostgreSQL) at the core of the system 

with standard SQL language used to access data.

 Based on industry standard technology.

 Databases are designed to be accessed simultaneously and 

connected to multiple different types of systems.

 Everything is logged by default. Traceability of commands from first 

development all the way to end of life.



Architecture

7

‘Mission Critical’ and ‘User’ programs are separated.

The mission critical system programs can be tightly controlled, while 

allowing rapid development for the rest of the system.

Easy to set up safe access via database to allow students to develop 

new systems without risk to key operations.



User Interface

8

All groundstations and spacecraft are accessed by the user though the 

same interface



User Interface

9

The user interface is based on a standard web interface. 

Commanding is primarily done via command stacks.



Task

Each task is a self contained plugin script allowing custom scripting if 

required.

Three standard scripts are used to cover almost all requirements



User Interface

11

Incoming data sets can be plotted graphically as soon as the data is 

received. Very useful during the testing phase!



User Interface

12

Custom displays can be built independently without affecting other 

systems. 

This is especially important for teaching and outreach, allowing screens 

that can demonstrate real-time status of both ground and space 

segments 



Mission Heritage

13

Full Missions

 Alsat

 Inflatesail

Build and Test

 Remove Debris 

(VBN Cubesat)

 CubeSail

 SME Sat

Heritage Missions

 Strand 

 DeorbitSail

+ various amateur and 

university cubesat

support



Alsat-1N

14

Used in Simulation Mode with 

engineering module to train operators

Installed at ASAL (CDS) in Algeria 

for primary groundstation



Mission Operations Training

15



Development Strategy

16

Recommendations from Development

 Agile development allowed us to have early initial capability, increasing the testing

time with the spacecraft. Software issues were found early and fixed instead of late in

the development.

 Initial architecture is critical. Make sure you have a flexible core that can cope with

changing requirements. Use of a standard database / interface has helped

 Combining test software and on orbit control software provides a huge timesaving in

training and provides confidence that the mission control system will work once in

orbit.

 Agile helped with project schedule challenges; make sure the whole system is there,

then improve.



Thank You! Questions?

17


