

WARR

Wissenschaftliche Arbeitsgemeinschaft für Raketentechnik und Raumfahrt

MOVE-II The Munich Orbital Verification Experiment II

Martin Langer, <u>Florian Schummer</u>, Nicolas Appel, Thomas Gruebler, Katja Janzer, Jonis Kiesbye, Lucas Krempel, Alexander Lill, David Messmann, Sebastian Rueckerl, Michael Weisgerber

Roadmap

Overview of the Munich Orbital Verification Experiment

Programmatic Goal: Hands-on Education for Students

- More than 130 Students involved so far (maximum: 110 at the same time)
- 51 Master Theses, Bachelor Theses etc. written on the project
- 25 publications on conferences and journals
- More than 52'600 hours of logged (mostly volunteer) work

Technological Goal

Verification of a bus-system for demanding scientific and technological CubeSat missions

WARR Satellite Technology

> COM: FPGA based SDRs UHF/VHF (full duplex) S-Band (half duplex/downlink only) Both in-house COTS: Battery, EPS, OBC **Deployables: Solarcells and** antennas, resettable, redundant shape memory alloy mechanism Main payload: 4-junction solar cell

Communication

- Custom layer 2 protocol: Nanolink (opposing AX.25)
- Virtual channels with guaranteed data rates
- Automatic repeat request protocol
- Tailored for moderate signal quality in low bandwidth-delay applications
- Telecommand with authentication
- UHF/VHF transceiver for telemetry and telecomand: 25kb/s (theoretical maximum) (in-house development)
- S-Band transceiver for future demanding payloads (3Mb/s downlink, 150kb/s uplink)
- FPGA based SDRs, reprogrammable in orbit

Central Data Handling

- ARM-9 processor running a custom Linux distribution
- FRAM and flash storage, carrying two SD-card slots (equipped with 132GB of storage in total)
- Modular software architecture enabling updates of single components
- Minimum viable product approach to enable integrated tests from early on
- Image stored multiple times (deterministic runtime-based selection)
- Kernel stored multiple times (random-selection at boot)

Testing Principles I: Early Integration, Dress Rehearsals and Mock-Ups

- Define stacking by preliminary TVAC testing
- Find all collissions before the production of qualifiable hardware

WARR

Satellite Technology

• Verify integration procedure before the production of qualifiable hardware

Testing Principles II: Maximum Availability and Ease-of-use for Testing Equipment

- Remote Accessability of:
- Command-line interface
- Logic analyzer
- Power supply
- Multimeter
- Camera

NARR

- Thermal vacuum chamber
- Development of Fake CDH/EPS
- Basic EPS and CDH abilities
- Used to test and develop ADCS
- Featuring a Beaglebone Black, wifi, SSH, internal battery
- Current iteration: Debug output of all 6 ADCS panels, visualization of all available values via grafana GUI, Slackbot to inform about low battery

Testing Principles III: Test-as-you-fly, Visualize, Gamification

Notification Service APP 10:18 PM

Statistics for Nov 30, 2017 of the EM OPS interface:

185 commands have been issued (of which **114** were successfully completed and **74** were maintenance commands)

12 files have been downloaded (of which 0 were successfully completed)

25 files have been uploaded (of which 5 were successfully completed)

Top Commanders are:

Testing Principles III: Test-as-you-fly, Visualize, Gamification

4th IAA Conference on University Satellite Missions and CubeSat Workshop, Dec 6, 2017

Programatic Aspects

- Motivitation through actively creating team spirit, good working environment, challenges and gamification of testing, distribution of responsibility to the team
- Launch in 2018 (SpaceX Falcon9, ISL, SSO-A)
- Use remaining time for dedicated operators training
- Eventually set up hardware-in-the-loop for operational training (power supply, attitude control, ...)

Thanks for your attention!

Get more insights at www.move2space.de

4th IAA Conference on University Satellite Missions and CubeSat Workshop, Dec 6, 2017

Verification through Hardware-in-the-loop tests

