Development of a hardware-in-the-loop test platform for nanosatellites ADCS integrated with an UKF

João Victor Lopes de Loiola
Lucas Meneses Bandeira da Silva
Simone Battistini
Chantal Cappelletti
Renato Alves Borges

Roma, December 6, 2017
1 LAICA’s Platform
2 The Problem
3 Architecture of the Simulator
4 Graphical View
5 Actuation System
6 UKF
7 UKF Results
8 PD Controller
9 PD Controller Results
10 Conclusions
LAICA’s Platform

- **Hardware**
 - Air bearing platform
 - Helmholtz cage
 - IMU Sensor
- **Actuators**
 - Reaction Wheels
 - Magnetorquer
- **Software**
 - Orbital propagator
 - UKF
 - Graphical visualization

Figure: General view of the LAICA’s platform.
Objective: the objective of this work is to develop a hardware-in-the-loop system to test nanosatellites actuation systems

- Frictionless condition.
- Use of three small reaction wheels.
- COTS gyro measurements.
- This work is a first attempt to close the control loop (ukf implemented in matlab and first control test of the wheels).
- Derivation of the wheels model.
Architecture of the Simulator

The Problem

Architecture of the Simulator

Graphical View

Actuation System

UKF

UKF Results

PD Controller

PD Controller Results

Conclusions

TLE

ORBITAL PARAMETERS

\(a, e, i, \omega, \Omega, \nu \)

SGP4 ORBIT PROPAGATOR

\(\vec{r}_e, \vec{v}_e \)

TRANSFORMATION MATRIX

ORBITAL REFERENCE FRAME

UKF

\(\theta_{srr}, \phi_{srr}, \psi_{srr} \)

ROTATIONAL MATRIX

ROTATIONAL BODY REFERENCE FRAME

ERROR EVALUATION

CONTROL

REACTION WHEELS

4th IAA Conference on University Satellites Missions & CubeSat Workshop
Graphical view of the software simulation which relates the body frame axes with to the orbital frame axes.
Reaction wheel’s model obtained from the step response:

\[
\frac{\Omega}{V_c} = \frac{51.42 s^4 + 2.004 \cdot 10^4 s^3 + 3.849 \cdot 10^5 s^2 + 9.916 \cdot 10^5}{s^4 + 93.47 s^3 + 552.5 s^2 + 2618 s + 7729}
\] (1)
Due to the platform nonlinear model, it was implemented an Unscented Kalman Filter (UKF) algorithm. The estimated state vector is given by:

\[
x = \begin{bmatrix}
\phi \\
\theta \\
\psi
\end{bmatrix}
\]

The system model is presented in Eq. 3.

\[
g(x_t, u_t, w_t) = x_t + \Lambda(x)u_t\Delta t + w_t ,
\]

Where,

\[
\Lambda(x) = \begin{bmatrix}
1 & \text{sen} \phi \text{tg} \theta & \cos \phi \text{tg} \theta \\
0 & \cos \phi & -\text{sen} \phi \\
0 & \text{sen} \phi \sec \theta & \cos \phi \sec \theta
\end{bmatrix}
\]
Figure: Unscented Kalman Filter output in black and measurement of the data in blue.
To test the hardware-in-the-loop system it was implemented a PD controller presented in Equation 5 in order to control the orientation of the satellite around the Z axis using the reference provided by the software. According to (A.Wu, 1999), the discrete PD control law is giving by:

$$PWM(k+1) = K_p * \text{error}(k) + \frac{K_p * T_d}{T} (\text{error}(k) - \text{error}(k-1)),$$

(5)

Where $\text{error}(k) = \psi(k)_{ref} - \psi(k)$
PD Controller Results

Figure: System output under actuation of the PD controller.

![Graph showing system output under PD controller](image-url)
Figure: Error variation with the time.
• In this work, the body’s orientation was reconstructed using an UKF, a control law was tested and a mathematical model from the reaction wheel was obtained.

• The UKF provided a tolerance to noise and package loses and improved the efficiency of the PD controller.

• The hardware-in-the-loop system was capable of simulate a tracking operation.

• In the future, the UKF will implemented on board computer.

• Other control strategies will be implemented. The PD presented here was just a preliminary test.
This work was supported by the Federal District Research Support Foundation (FAPDF) and the Coordination for the Improvement of Higher Education Personnel (CAPES).
Thank You!

victor@lara.unb.br
silva.ngc7293@gmail.com