

Lyapunov based attitude control algorithm for slew maneuvers with restrictions

Yaroslav Mashtakov Mikhail Ovchinnikov Stepan Tkachev Mark Shachkov

4th IAA Conference on University Satellite Missions and CubeSat Workshop

Introduction

We want to perform the slew maneuver Restrictions:

- Camera axis does not look at bright objects
- Solar panels are directed to the Sun

How to do that?

- Pontryagin's maximum principle
 Time optimal
 Too complicated for on-board implementation
- Lyapunov based
 - ✓Simple

✓ Robust

×Not time optimal

Problem statement

What do we know?

- Satellite parameters
- Forbidden areas (cones, do not move in Inertial space)
- Axis that should not be located in forbidden area (camera axis)
- Initial and reference attitude
- Initial and reference angular velocity equals zero

What do we want?

- Perform the slew maneuver
- Avoid the forbidden areas

Lyapunov based attitude control

- Widely used for attitude control
- Ensures asymptotic stability of the reference motion
- Robust

Main idea:

- Positive definite function
- Control ensures nonpositivity of its time derivative
- In accordance with Barbashin-Krasovskyy-LaSalle principle asymptotic stability is ensured

Examples

Function:Funct $V_0 = \frac{1}{2} (\boldsymbol{\omega}_{rel}, \mathbf{J} \boldsymbol{\omega}_{rel}) + k_a (3 - \text{Tr}(A))$ FunctRelative motion equations: $V_0 = \frac{1}{2}$ $J\dot{\boldsymbol{\omega}}_{rel} + k_\omega \boldsymbol{\omega}_{rel} + k_a q_0 \mathbf{q} = 0$ Relative $J\dot{\boldsymbol{\omega}}_{rel} + k_\omega \boldsymbol{\omega}_{rel} + k_a q_0 \mathbf{q} = 0$ $J\dot{\boldsymbol{\omega}}_{rel} - \mathbf{M}_{erel} + \mathbf{M}_{abs} \times \mathbf{J} \boldsymbol{\omega}_{abs} + \mathbf{J} \mathbf{A} \dot{\boldsymbol{\omega}}_{ref} - \mathbf{M}_{erel} = \mathbf{M}_{erel} + \mathbf{M}_{abs} \times \mathbf{J} \boldsymbol{\omega}_{abs} + \mathbf{J} \mathbf{A} \dot{\boldsymbol{\omega}}_{ref} - \mathbf{M}_{erel} = \mathbf{M}_{erel} + \mathbf{M}_{abs} \times \mathbf{J} \boldsymbol{\omega}_{abs} + \mathbf{J} \mathbf{A} \dot{\boldsymbol{\omega}}_{ref} - \mathbf{M}_{erel} = \mathbf{M}_{erel} + \mathbf{M}_{abs} \times \mathbf{J} \boldsymbol{\omega}_{abs} + \mathbf{J} \mathbf{A} \dot{\boldsymbol{\omega}}_{ref} - \mathbf{M}_{erel} = \mathbf{M}_{erel} + \mathbf{M}_{abs} \times \mathbf{J} \mathbf{M}_{abs} + \mathbf{M}_{abs}$

$$-\mathbf{J}[\boldsymbol{\omega}_{rel}]_{\times}\mathbf{A}\boldsymbol{\omega}_{ref}-k_a q_0 \mathbf{q}-k_{\omega}\boldsymbol{\omega}_{rel}$$

Function: $V_{0} = \frac{1}{2} (\boldsymbol{\omega}_{rel}, \mathbf{J}\boldsymbol{\omega}_{rel}) + k_{q} (1 - q_{0})$ Relative motion equations: $J\dot{\boldsymbol{\omega}}_{rel} + k_{\omega}\boldsymbol{\omega}_{rel} + k_{q}\mathbf{q} = 0$ Control:

$$\mathbf{M}_{ctrl} = -\mathbf{M}_{ext} + \mathbf{\omega}_{abs} \times \mathbf{J}\mathbf{\omega}_{abs} + \mathbf{J}\mathbf{A}\dot{\mathbf{\omega}}_{ref} - \mathbf{J}[\mathbf{\omega}_{rel}]_{\times} \mathbf{A}\mathbf{\omega}_{ref} - k_q \mathbf{q} - k_{\omega}\mathbf{\omega}_{rel}$$

 $(q_0, \mathbf{q}), A$ are quaternion and rotation matrix from Reference Frame to Body Frame $\boldsymbol{\omega}_{rel}$ is relative angular velocity **J** is tensor of inertia

 k_a, k_ω, k_q are positive constants

Main idea

- Standard function V₀ cannot be applied
- Include restrictions: $V = V_0 \cdot f$
- f is a function that takes high values in the forbidden area
- Control ensures negativity of Lyapunov function time derivative, hence forbidden areas will be avoided
- Almost the same as the potential barrier around the forbidden area

Global function

$$f = \sum_{i=1}^{n} \frac{a_i}{\cos \alpha_i - (\mathbf{e}, \mathbf{h}_i)}$$

 a_i are constants, α_i is the minimum angle between the cone axis \mathbf{h}_i and the camera axis \mathbf{e}_f

Lyapunov function:

$$V = \left(\frac{1}{2}(\boldsymbol{\omega}, \mathbf{J}\boldsymbol{\omega}) + k_q (1 - q_0)\right) \sum_{i=1}^n \frac{a_i}{\cos \alpha_i - (\mathbf{e}, \mathbf{h}_i)}$$

Control (reference motion is inertial stabilization, n = 1 for simplicity):

$$\mathbf{M}_{ctrl} = \mathbf{\omega} \times J\mathbf{\omega} - \mathbf{M}_{ext} - k_q \mathbf{q} - k_{\omega} \frac{\cos \alpha - (\mathbf{e}, \mathbf{h})}{a} \mathbf{\omega} - \mathbf{e} \times \mathbf{h} \frac{(\mathbf{\omega}, \mathbf{J}\mathbf{\omega}) + 2k_q (1 - q_0)}{\cos \alpha - (\mathbf{e}, \mathbf{h})}$$

Local function

$$f_i = \begin{cases} 1, & (\mathbf{e}, \mathbf{h}_i) \le \cos \beta_i \\ a_i, & (\mathbf{e}, \mathbf{h}_i) \ge \cos \alpha_i \end{cases}, \quad \beta_i > \alpha_i \end{cases}$$

 α_i is the minimum angle between the cone axis \mathbf{h}_i and the camera axis \mathbf{e}_f

 $\beta_{\!_i}$ is the angle where avoidance algorithm starts working

Lyapunov function:

$$V = \left(\frac{1}{2}(\boldsymbol{\omega}, \mathbf{J}\boldsymbol{\omega}) + k_q \left(1 - q_0\right)\right) \prod_{1}^{n} f_i$$

Control (reference motion is inertial stabilization, n = 1 for simplicity):

$$\mathbf{M}_{ctrl} = \mathbf{\omega} \times J\mathbf{\omega} - \mathbf{M}_{ext} - k_q \mathbf{q} - \frac{k_{\omega}}{f} \mathbf{\omega} - \mathbf{e} \times \mathbf{h} \left[\frac{1}{2} (\mathbf{\omega}, \mathbf{J}\mathbf{\omega}) + k_q (1 - q_0) \right] \frac{f'}{f}$$

Global function

Local function

J = diag(20, 30, 40)

$$\alpha_i = \frac{\pi}{6}, \quad \beta_i = \frac{\pi}{4}$$

J = diag(20, 30, 40)

$$\alpha_i = \frac{\pi}{6}, \quad \beta_i = \frac{\pi}{4}$$

Local function

$$\mathbf{J} = \text{diag}(20, 30, 40) \qquad \alpha_i = \frac{\pi}{6}, \quad \beta_i = \frac{\pi}{4}$$
$$\mathbf{\omega}_0 = \begin{pmatrix} 0 & 0 & 5 \cdot 10^{-3} \end{pmatrix}$$

4th IAA Conference on USM and CubeSat Workshop

13/17

Two intersected cones

Two intersected cones

Conclusion

- The Lyapunov based attitude control is used for the problem of slew maneuver realization
- Two different modifications of the Lyapunov approach are suggested
- There are some problems: unstable (in case of two intersected conses asymptotically stable) equilibrium, long convergence time
- Further investigation of the relation between the control constants and convergence time is necessary

This work is supported by Russian Science Foundation (project no. 17-71-20117)