Efficient Star Identification Algorithm for Nanosatellites in Harsh Environment IAA-AAS-CU-17-05-02
 Vincenzo Schiattarella ${ }^{1}$, Dario Spiller ${ }^{2}$, Fabio Curt β^{3}

${ }^{1}$ Post-graduate Student, School of Aerospace Engineering, Sapienza University of Rome, Rome 00138 , Italy, Email: vincenzo.schiattarella@uniroma1.it
2 PhD Student, School of Aerospace Engineering, Sapienza University of Rome, Rome 00138, Italy. Email. dario.spiller@uniroma1.it.
${ }^{3}$ Associate Professor, School of Aerospace Engineering, Sapienza University of Rome, Rome - 00138, Italy. Email: fabio.curti@uniroma1. it

UNIVERSITÀ DI ROMA
Automation Robotics and Control for Aerospace Laboratory

Introduction

Next CubeSat generations will require more accurate attitude estimations provided by stars sensors.

Introduction

Next CubeSat generations will require more accurate attitude estimations provided by stars sensors.

False objects represent the major issue in star identification since star trackers for CubeSat generally have low radiation shielding.

Introduction

Next CubeSat generations will require more accurate attitude estimations provided by stars sensors.

False objects represent the major issue in star identification since star trackers for CubeSat generally have low radiation shielding.

This work proposes a feasibility study for a third improvement of the Multi-Poles Algorithm (MPA).

Introduction

Next CubeSat generations will require more accurate attitude estimations provided by stars sensors.

False objects represent the major issue in star identification since star trackers for CubeSat generally have low radiation shielding.

This work proposes a feasibility study for a third improvement of the Multi-Poles Algorithm (MPA).

The MPA is a star identification algorithm for Lost in Space.
It is especially designed to be robust in presence of a large number of false objects in the image.

Multi-Poles Algorithm

Original Idea

The original idea has been published in Advances in Space Research, Vol. 59, Issue 8, Pages 2133-2147, "A novel star identification technique robust to high presence of false objects: The Multi-Poles Algorithm"

Multi-Poles Algorithm

Original Idea

The original idea has been published in Advances in Space Research, Vol. 59, Issue 8, Pages 2133-2147, "A novel star identification technique robust to high presence of false objects: The Multi-Poles Algorithm"

MPA main characteristics:
> Recognize stars using THREE phases
> Magnitude data are NOT required
> Stop when the desired number of stars are recognized

Multi-Poles Algorithm

Original Idea

The original idea has been published in Advances in Space Research, Vol. 59, Issue 8, Pages 2133-2147, "A novel star identification technique robust to high presence of false objects: The Multi-Poles Algorithm"

MPA main characteristics:

> Recognize stars using THREE phases
> Magnitude data are NOT required

- Stop when the desired number of stars are recognized

MPA is able to return correct identifications for a number of false objects up to 6 times the number of the cataloged stars in the image.

Multi-Poles Algorithm

Participation to ESA contest - Star Trackers: First Contact

Goal: Propose new and fast star identification algorithms for star trackers that are robust to measurement uncertainties and artifacts.

Star Trackers: First Contact

Lost in Space

Multi-Poles Algorithm

Participation to ESA contest - Star Trackers: First Contact

Goal: Propose new and fast star identification algorithms for star trackers that are robust to measurement uncertainties and artifacts.

Difference w.r.t. MPA (original idea) :
> Recognize stars using TWO phases
> Magnitude data are REQUIRED
> Stop when the maximum number of stars are recognized

Star Trackers: First Contact

Lost in Space

Ended Sept. 1, 2017

Multi-Poles Algorithm

Participation to ESA contest - Star Trackers: First Contact

Goal: Propose new and fast star identification algorithms for star trackers that are robust to measurement uncertainties and artifacts.

Difference w.r.t. MPA (original idea) :
> Recognize stars using TWO phases
> Magnitude data are REQUIRED
> Stop when the maximum number of stars are recognized

MPA has reported the second highest accuracy score and speed:

- 9703.4313 (w.r.t. a perfect score of 9921.0)
- 0.58 s (Total time required for 10000 scenes) $58 \mu \mathrm{~s}$ per scene

Star Trackers: First Contact

Lost in Space

Ended Sept. 1, 2017

Multi-Poles Algorithm

New version

The new MPA is a mixed approach between the two former versions of the algorithm:
> Recognize stars using TWO phases: the acceptance phase and the check phase.
> Magnitude data are REQUIRED
> Stop when the desired number of stars are recognized

Multi-Poles Algorithm

New version

The new MPA is a mixed approach between the two former versions of the algorithm:
> Recognize stars using TWO phases: the acceptance phase and the check phase.
> Magnitude data are REQUIRED
\rightarrow Stop when the desired number of stars are recognized
The on-board catalog is based on the Hipparcos identifier h and the magnitude m of 2 stars.

h_{01}	h_{02}	m_{01}	m_{02}	
h_{11}	h_{12}	m_{11}	m_{12}	
\vdots	\vdots	\vdots	\vdots	
on-board catalog				

Multi-Poles Algorithm

New version

The new MPA is a mixed approach between the two former versions of the algorithm:
> Recognize stars using TWO phases: the acceptance phase and the check phase.
> Magnitude data are REQUIRED
> Stop when the desired number of stars are recognized
The on-board catalog is based on the Hipparcos identifier h and the magnitude m of 2 stars.

First of all a function to project spikes image coordinates onto sensor reference frame is required. Each spike will be associated to a 3D unit vector \boldsymbol{v}_{i} and an estimated magnitude value m_{i}.

$$
\boldsymbol{s}_{\boldsymbol{i}}=\left[\boldsymbol{v}_{i}, m_{i}\right] \quad \text { Sorted by ascending magnitude }
$$

Multi-Poles Algorithm

Acceptance phase

The acceptance phase is based on a polar approach and returns a set of Accepted stars. This phase consists of the following steps:

1. Select a spike s_{i} named pole $p^{(i)}$, and computes the angular distances $\theta_{i j}$ between the pole and the other spikes s_{j} in the image, named neighbors $n_{j}^{(i)}$.

Image

Multi-Poles Algorithm

Acceptance phase

2. Search for each angular distance $\theta_{i j}$ within a given tolerance the stars in the onboard catalog.

h_{01}	h_{02}	m_{01}	m_{02}
h_{11}	h_{12}	m_{11}	m_{12}
\vdots	\vdots	\vdots	\vdots
\vdots	\vdots	\vdots	\vdots
h_{11}	h_{12}	m_{11}	m_{12}
\vdots			
Search			
result			

on-board catalog

Multi-Poles Algorithm

Acceptance phase

2. Search for each angular distance $\theta_{i j}$ within a given tolerance the stars in the onboard catalog.

3. Restrict the number of resulting stars through magnitude information making lists of stars pairs Hipparcos identifiers $\prod_{j}^{(i)}$.
The pairs are the admissible pole's and neighbors' identifiers.

Multi-Poles Algorithm

Acceptance phase

3. Accept as Pole Star the Hipparcos identifier which has the maximum number of appearances through the lists of pairs.

| $\prod_{2}^{(1)}$ | $\prod_{3}^{(1)}$ | $\Pi_{4}^{(1)}$ | $\prod_{5}^{(1)}$ | $\prod_{6}^{(1)}$ | $\Pi_{7}^{(1)}$ | $\prod_{8}^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31,40 | 100,102 | 1346,1352 | $5, \underline{10}$ | 81,97 | 993,999 | 534,546 |
| 500,512 | $\underline{10,16}$ | 416,425 | 44,65 | | 2023,2031 | 876,893 |
| | 231,242 | $8, \underline{10}$ | | | 3648,3742 | |
| | 1028,1032 | | | | 10,21 | |

Multi-Poles Algorithm

Acceptance phase

3. Accept as Pole Star the Hipparcos identifier which has the maximum number of appearances through the lists of pairs.

$\Pi_{2}^{(1)}$	$\Pi_{3}^{(1)}$	$\Pi_{4}^{(1)}$	$\Pi_{5}^{(1)}$	$\Pi_{6}^{(1)}$	$\Pi_{7}^{(1)}$	$\Pi_{8}^{(1)}$
31,40	100,102	1346,1352	5,10	81,97	993,999	534,546
500,512	10,16	416,425	44,65		2023,2031	876,893
	231,242	8,10				3648,3742
	1028,1032					10,21

4. Search in the lists of pairs the Hipparcos identifier coupled with Pole Star and accept it as Neighbor Star. The Accepted stars set will be:

$p^{*(1)}$	F	$n_{3}^{*(1)}$	$n_{4}^{*(1)}$	$n_{5}^{*(1)}$	F	F	$n_{8}^{*(1)}$
10	-1	16	8	5	-1	-1	21

Multi-Poles Algorithm

Next poles selection

$n_{8}^{*(1)}$	$\bullet-1$	$\bullet n_{5}^{*(1)}$
\bullet^{-1}	-1	$\bullet n_{4}^{*(1)}$
	$n_{3}^{*(1)} \bullet$	$p^{*(1)}$

Accepted stars returned

New poles are selected within the spikes previously accepted as neighbor stars.

Multi-Poles Algorithm

Next poles selection

Accepted stars returned

New poles are selected within the spikes previously accepted as neighbor stars.

Accepted stars NOT returned
Selection criterion remains spike magnitude: next spike is selected as pole.

Multi-Poles Algorithm

Check phase

The check phase performs a cross-check between two sets of accepted stars. Check if the number of stars belonging to the intersection of two accepted stars sets is greater than a threshold value t^{*}, which is an user defined minimum number of required stars.

$p^{*(1)}$	F	$n_{3}^{*(1)}$	$n_{4}^{*(1)}$	$n_{5}^{*(1)}$	F	F	$n_{8}^{*(1)}$
10	-1	16	8	5	-1	-1	21

First accepted stars set

$n_{1}^{*(3)}$	F	$p^{*(3)}$	$n_{4}^{*(3)}$	F	$n_{6}^{*(3)}$	F	$n_{8}^{*(3)}$
10	-1	16	8	-1	11	-1	21

Second accepted stars set

Multi-Poles Algorithm

Check phase

The check phase performs a cross-check between two sets of accepted stars. Check if the number of stars belonging to the intersection of two accepted stars sets is greater than a threshold value t^{*}, which is an user defined minimum number of required stars.

$p^{*(1)}$	F	$n_{3}^{*(1)}$	$n_{4}^{*(1)}$	$n_{5}^{*(1)}$	F	F	$n_{8}^{*(1)}$
10	-1	16	8	5	-1	-1	21

First accepted stars set

$n_{1}^{*(3)}$	F	$p^{*(3)}$	$n_{4}^{*(3)}$	F	$n_{6}^{*(3)}$	F	$n_{8}^{*(3)}$
10	-1	16	8	-1	11	-1	21

Second accepted stars set

s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}
10	-1	16	8	-1	-1	-1	21

Recognized stars set

Results

Tests Definition

The adopted simulator has been provided by ESA in the frame of Kelvins ESA contest "Star Trackers: First Contact".

Results

Tests Definition

The adopted simulator has been provided by ESA in the frame of Kelvins ESA contest "Star Trackers: First Contact".

Success for each simulation is evaluated as the percentage of image with no false star wrongly identified and at least 3 correctly identified stars

Results

Tests Definition

The adopted simulator has been provided by ESA in the frame of Kelvins ESA contest "Star Trackers: First Contact".

Success for each simulation is evaluated as the percentage of image with no false star wrongly identified and at least 3 correctly identified stars

Accuracy is evaluated trough a scoring function depending on number of correctly and wrongly identified stars. Relative accuracy is evaluated as the percentage of accuracy where at least 3 actual stars are in the image.

Tests Definition

The adopted simulator has been provided by ESA in the frame of Kelvins ESA contest "Star Trackers: First Contact".

Success for each simulation is evaluated as the percentage of image with no false star wrongly identified and at least 3 correctly identified stars

Accuracy is evaluated trough a scoring function depending on number of correctly and wrongly identified stars. Relative accuracy is evaluated as the percentage of accuracy where at least 3 actual stars are in the image.

We perform the following simulation campaigns:
> Tests for increasing number of false objects
> Tests with at least $\boldsymbol{\eta}$ real stars in the image
> Tests with only $\boldsymbol{\eta}$ real stars in the image

Results for increasing number of false objects in the image

The simulation campaign deals with tests performed for ascending maximum number of false objects in the image. For each simulation, 1000 images with random pointings have been checked. The number of actual stars per image is at least 0 (i.e. the most generic conditions).

Maximum false stars in the image

Results with at least η real stars in the image

Defining η as the minimum value of actual stars in the image, the simulation campaign deals with tests performed for ascending $\boldsymbol{\eta}$ ranging from 0 to 9 stars. For each simulation, 1000 images with random attitude have been checked.

Results with only η real stars in the image

Defining $\boldsymbol{\eta}$ as the value of actual stars in the image, the simulation campaign deals with tests performed for ascending η ranging from 2 to 9 stars.
For each simulation, 1000 images with random attitude have been checked.

Results

Time Performances

The MPA C source code has been profiled on an Intel® Core 2 Quad Processor Q6600 @ 2.40 GHz machine CPU architecture.

The elapsed time for simulation depends on number of stars in the image.

Conclusion

The results show that MPA success rate ranges from 99% to 100% for simulation with at least 3 actual stars per image. In case with less than 3 actual stars in the image no wrong identification has occurred.

The results show that MPA success rate ranges from 99% to 100% for simulation with at least 3 actual stars per image. In case with less than 3 actual stars in the image no wrong identification has occurred.

With a low computational performances CPU architecture, the mean elapsed time for random simulations ranges from a minimum of $3 \cdot 10^{-5}$ seconds with 10 false stars to a maximum of $2.7 \cdot 10^{-4}$ seconds with 80 false stars.

The results show that MPA success rate ranges from 99% to 100% for simulation with at least 3 actual stars per image. In case with less than 3 actual stars in the image no wrong identification has occurred.

With a low computational performances CPU architecture, the mean elapsed time for random simulations ranges from a minimum of $3 \cdot 10^{-5}$ seconds with 10 false stars to a maximum of $2.7 \cdot 10^{-4}$ seconds with 80 false stars.

The algorithm robustness capability and its modest computational requirement enhance the opportunity to adopt MPA in star trackers for CubeSat, for mission where an accurate attitude knowledge is required.

The results show that MPA success rate ranges from 99% to 100% for simulation with at least 3 actual stars per image. In case with less than 3 actual stars in the image no wrong identification has occurred.

With a low computational performances CPU architecture, the mean elapsed time for random simulations ranges from a minimum of $3 \cdot 10^{-5}$ seconds with 10 false stars to a maximum of $2.7 \cdot 10^{-4}$ seconds with 80 false stars.

The algorithm robustness capability and its modest computational requirement enhance the opportunity to adopt MPA in star trackers for CubeSat, for mission where an accurate attitude knowledge is required.

Future improvements will require increasing centroiding noise and finding best parameters configuration.

Thanks for your attention.

School of Aerospace Engineering

UNIVERSITÀ DI ROMA
Automation Robotics and Control for Aerospace Laboratory

