The 4th IAA Conference on University Satellite Missions \& CubeSat Workshop

$$
\text { Rome, Italy, 4-7 December } 2017
$$

Lorenzo Niccolai, Marco Bassetto, Alessandro A. Quarta, \& Giovanni Mengali

Department of Civil and Industrial Engineering

Università di Pisa
Plasma Brake Approximate Trajectory
Part I: Geocentric Motion

Outline

(1) Introduction

- Aim of the work
- Plasma brake concept
(2) Mathematical model
- Equations of motion
- Variational equations of modified parameters
- Series expansion
- Evolution of modified parameters
(3) Approximate plasma brake model
- Coulomb drag expression
- Coulomb drag analytical approximation

4 Rectification procedure
(5) Case study
(6) Conclusions

Introduction

Aim of the work

Motivation

- Space debris is a major concern, especially for LEO missions.
- IADC guidelines: residual orbit life ≤ 25 years for out-of-order satellites.
- Plasma brake is a promising innovation in terms of deorbiting technologies.

Aim of the work

- Analytical approximation of the geocentric trajectory of a spacecraft equipped with a plasma brake
- Estimation of the decay time

Plasma brake concept

Plasma brake

- Derivation of the electric solar wind sail (E-sail) concept
- Application: deorbiting from LEO

Working principle

- A tether is released in the ionosphere and electrostatically charged by a voltage source.
- The collisions between ions and tether generate a Coulomb drag.
- The Coulomb drag lowers the spacecraft altitude.

Geometrical sketch of the problem

geocentric trajectory

Note: subscript 0 identifies initial conditions.

Mathematical model

2D Equations of motion

- Polar reference frame
- Two-dimensional motion (thrust vector belongs to the orbital plane)
- Coulomb drag opposite to spacecraft velocity

Nomenclature

$$
\left\{\begin{array}{l}
\ddot{r}-r \dot{\theta}^{2}=-\frac{\mu_{\oplus}}{r^{2}}-\epsilon \frac{\mu_{\oplus}}{r_{0}^{2}} \frac{\dot{r}}{\sqrt{\dot{r}^{2}+(r \dot{\theta})^{2}}} \\
r \ddot{\theta}+2 \dot{r} \dot{\theta}=-\epsilon \frac{\mu_{\oplus}}{r_{0}^{2}} \frac{r \dot{\theta}}{\sqrt{\dot{r}^{2}+(r \dot{\theta})^{2}}}
\end{array}\right.
$$

- $\mu_{\oplus} \triangleq$ Earth's gravitational parameter
- $D_{c} \triangleq$ Coulomb drag magnitude
- $\epsilon \triangleq D_{c} / \sqrt{\mu_{\oplus} / r_{0}^{2}}$

Problems

- Coulomb drag is very complex to model.
- The integration has a high computational cost.

Non-singular orbital elements

Introduction of non-dimensional orbital parameters (Bombardelli et al., 2011):

$$
q_{1} \triangleq \frac{e}{\widetilde{H}} \cos \omega, \quad q_{2} \triangleq \frac{e}{\widetilde{H}} \sin \omega, \quad q_{3} \triangleq \frac{1}{\widetilde{H}}
$$

where \widetilde{H} is the dimensionless angular momentum magnitude Note: classical orbital parameters can be recovered as

$$
\begin{array}{ll}
a=\frac{r_{0}}{q_{3}^{2}-q_{1}^{2}-q_{2}^{2}} & \omega=\arctan \left(\frac{q_{2}}{q_{1}}\right) \\
e=\frac{\sqrt{q_{1}^{2}+q_{2}^{2}}}{q_{3}} & v_{r}=\sqrt{\frac{\mu_{\odot}}{r_{0}}}\left(q_{1} \sin \theta-q_{2} \cos \theta\right) \\
r=\frac{r_{0}}{q_{3}^{2}+q_{1} q_{3} \cos \theta+q_{2} q_{3} \sin \theta} & v_{\theta}=\sqrt{\frac{\mu_{\odot}}{r_{0}}}\left(q_{1} \cos \theta+q_{2} \sin \theta+q_{3}\right)
\end{array}
$$

Variational equations of modified parameters

The variational equations of modified parameters are (Coulomb drag opposite w.r.t. orbital velocity)

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta}\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\frac{\epsilon}{q_{3} s^{3} \sqrt{e^{2}+2 e \cos \nu+1}}\left[\begin{array}{cc}
s \sin \theta & \left(s+q_{3}\right) \cos \theta \\
-s \cos \theta & \left(s+q_{3}\right) \sin \theta \\
0 & -q_{3}
\end{array}\right]\left[\begin{array}{c}
e \sin \nu \\
1+e \cos \nu
\end{array}\right]
$$

where

$$
s=q_{1} \cos \theta+q_{2} \sin \theta+q_{3}, \quad e=\frac{\sqrt{q_{1}^{2}+q_{2}^{2}}}{q_{3}}, \quad \nu=\theta-\arctan \left(\frac{q_{2}}{q_{1}}\right)
$$

Initial conditions:

$$
q_{1}=\frac{e_{0}}{\widetilde{H}_{0}}, \quad q_{2}=0, \quad q_{3}=\frac{1}{\widetilde{H}_{0}} \quad \text { with } \quad \widetilde{H}_{0}=\sqrt{1+e_{0} \cos \nu_{0}}
$$

Introduction to expansion method

Fundamental hypothesis

The Coulomb drag magnitude is small w.r.t. the Earth's gravity, i.e. $\epsilon \ll 1$

The dimensionless propulsive acceleration ϵ is a perturbation term in the asymptotic series expansion:

$$
\begin{aligned}
& q_{1}=q_{10}+\epsilon q_{11}+O\left(\epsilon^{2}\right) \\
& q_{2}=q_{20}+\epsilon q_{21}+O\left(\epsilon^{2}\right) \\
& q_{3}=q_{30}+\epsilon q_{31}+O\left(\epsilon^{2}\right)
\end{aligned}
$$

where

- $q_{i 0}$ are (constant) unperturbed terms
- $q_{i 1}$ are first order perturbation terms

Evolution of modified parameters

Mathematical procedure

(1) The series expansions are substituted in the variational equations.
(2) Terms of the same perturbative order are equated.
(3) Differential equations are integrated in the angular variable, maintaining constant the value of the perturbative parameter ϵ.

Analytical expressions of modified parameters (circular initial orbit)

$$
\begin{aligned}
& q_{1}=-2 \epsilon\left(\sin \theta-\sin \theta_{0}\right) \\
& q_{2}=2 \epsilon\left(\cos \theta-\cos \theta_{0}\right) \\
& q_{3}=1 / \widetilde{H}_{0}+\epsilon\left(\theta-\theta_{0}\right)
\end{aligned}
$$

More complex expressions exist for the elliptic initial orbit case.

Approximate plasma brake model

Coulomb drag

Hypothesis

- Earth's magnetosphere effects are neglected (Janhunen, 2014).
- A constant drag per unit length is assumed.
- A Heytether is considered.

Nomenclature

- el \triangleq elementary charge
- $m_{i} \triangleq$ ions mass
- $n \triangleq$ plasma bulk density
- $\epsilon_{0} \triangleq$ vacuum permittivity
Coulomb drag from a tether with length L_{t} and (negative) electric potential V_{t} (Janhunen, 2014)

$$
D_{c}=3.864 L_{t} m_{i} n v^{2} \sqrt{\frac{\epsilon_{0} V_{a}}{e l n}} \exp \left(-\frac{m_{i} v^{2}}{2 e l V_{a}}\right) \quad \text { with } \quad V_{a} \triangleq \frac{2\left|V_{t}\right|}{\ln \left(\frac{\epsilon_{0}\left|V_{t}\right|}{e l n_{0} b_{t} r_{w}}\right)}
$$

Approximate model (Orsini et al., 2017)

- Plasma density estimated with geopotential model
- Constant ions mass (atomic oxygen, $m_{i} \simeq 16 \mathrm{u}$) and temperature
- Initial altitude taken as reference altitude

$$
D_{c} \simeq D_{c 0} \sqrt{\frac{n}{n_{0}}}\left(\frac{v}{v_{0}}\right)^{2} f_{1}\left(v, v_{0}\right) f_{2}\left(n, n_{0}, v, v_{0}\right) f_{3}\left(n, n_{0}\right)
$$

$D_{c 0}$ is calculated with accurate ionosphere models (IRI).
Approximation for LEOs ($300 \mathrm{~km} \leq h \leq 1000 \mathrm{~km}$) with $\widetilde{h}=1000 \mathrm{~km}$

- $0.96 \leq f_{1} \leq 1 \quad 1 \leq f_{2} \leq 1.04 \quad \Rightarrow f_{1} f_{2} \simeq 1$
- $\left(v / v_{0}\right)^{2} \simeq 1 \quad$ Conservative assumption with max error 10%
- $f_{3} \simeq 1$

Conservative assumption with max error 16.5%

$$
D_{c} \simeq D_{c 0} \exp \left\{-\frac{m_{i} \mu_{\oplus}}{4 k_{B} T}\left[\frac{h}{\left(R_{\oplus}+h\right)^{2}}-\frac{h_{0}}{\left(R_{\oplus}+h_{0}\right)^{2}}\right]\right\}
$$

Rectification procedure

Rectification procedure (1/2)

(1) Select the rectification coordinate θ_{r} and calculate the corresponding values of the modified parameters $q_{i r}$.
(2) Find the altitude h_{r}, the eccentricity e_{r}, the true anomaly ν_{r}, the apse line rotation angle ω_{r}, and the dimensionless angular momentum \widetilde{H}_{r} as functions of $q_{i r}$.
(3) Update the magnitude of the Coulomb drag at the altitude h_{r} by means of the approximate analytical model and calculate the new value of the perturbative parameter $\bar{\epsilon}$.
(9) Define a new set of auxiliary variables

$$
\bar{\theta} \triangleq \theta-\omega, \quad \bar{\omega} \triangleq \omega-\omega_{r}, \quad \bar{q}_{1} \triangleq \frac{e}{\widetilde{H}} \cos \omega_{r} \quad \bar{q}_{2} \triangleq \frac{e}{\widetilde{H}} \sin \omega_{r} \quad \bar{q}_{3} \triangleq \frac{1}{\widetilde{H}}
$$

Rectification procedure (2/2)

(0) The initial conditions for the new auxiliary variables are

$$
\bar{\theta}_{0}=\nu_{r}, \quad \bar{\omega}_{0}=0, \quad \bar{q}_{10}=\frac{e_{r}}{\widetilde{H}_{r}}, \quad \bar{q}_{20}=0, \quad \bar{q}_{30}=\frac{1}{\widetilde{H}_{r}}
$$

(0) Calculate the evolution of the new auxiliary variables with the analytical expressions, substituting $e_{0}, \widetilde{H}_{0}, \nu_{0}$, and ϵ with $e_{r}, \widetilde{H}_{r}, \nu_{r}$, $\bar{\epsilon}$, and $\bar{\theta}$, respectively.
(0) To get the initial parameters, apply the following rotational matrix

$$
\left[\begin{array}{l}
q_{1}(\theta) \\
q_{2}(\theta) \\
q_{3}(\theta)
\end{array}\right]=\left[\begin{array}{ccc}
\cos \omega_{r} & -\sin \omega_{r} & 0 \\
\sin \omega_{r} & \cos \omega_{r} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{q}_{1}(\bar{\theta}) \\
\bar{q}_{2}(\bar{\theta}) \\
\bar{q}_{3}(\bar{\theta})
\end{array}\right] \quad \text { for } \quad \theta \geq \theta_{r}
$$

Case study

Deorbiting profile from $h_{0}=1000 \mathrm{~km}$, mean solar activity Three different nanosatellites are analyzed in our simulations

	$m[\mathrm{~kg}]$	$L_{t}[\mathrm{~m}]$	$\left\|V_{t}\right\|[\mathrm{V}]$
spacecraft 1	1.0	25	500
spacecraft 2	4.0	100	1000
spacecraft 3	10.0	300	1000

Comparison between the approximate method with 100 rectifications per year (red line) and an orbital propagator (black line)

Decay times from $h_{0}=1000 \mathrm{~km}$ to 300 km

	Numerical	Analytical	Percentage error
spacecraft 1	1317 days	1320 days	0.26%
spacecraft 2	924 days	928 days	0.38%
spacecraft 3	770 days	774 days	0.45%

Remarks

- The estimation of the geocentric trajectory is practically coincident with the output of an orbital propagator.
- The determination of the decay time is also very accurate.
- The approximated method requires a computational cost which is about 2 order of magnitudes smaller w.r.t. the numerical integration of the equations of motion.
- The estimated decay times are in accordance with IADC guidelines.

Conclusions

Conclusions

- Approximate method for the geocentric trajectory analysis of a spacecraft deorbiting from a LEO by means of a plasma brake
- Model based on the small magnitude of the Coulomb drag, which is expressed as a function of the orbital altitude only
- Results show very small errors, both in terms of geocentric trajectory and decay times, when compared to the outputs of an orbital propagator
- Computational time about two order of magnitudes smaller with respect to the numerical integration of the equations of motion, even with a high number of rectifications
- Decay times of a plasma brake-enabled deorbiting are in accordance with international guidelines

4th IAA Conference on

University Satellite Missions and CubeSat Workshop

Rome, Italy, 4-7 December 2017

Lorenzo Niccolai, Marco-Bass

 Alessandro A. Quarta \& Giovanr MerigaliPlasma Brake Approximate Trajectory.
Part I: Geocentric Motion

