A Small Platform Application for Close Inspection of an Uncontrolled Satellite

Renato Volpe, Ph.D. Student Marco Carpentiero, Ph.D. Student Angelo Stolfi, Ph.D. Student

SAPIENZA

Università di Roma

Space Proximity Operations: the framework

- Visual inspection, Active Debris Removal and satellite maintenance represent the main space proximity operations
- High level of operational autonomy is required as the target is usually noncooperative and uncontrolled due to possible failures

Mission Scenario

Small platform application for close visual inspection of an out-of-control, freely tumbling satellite

- Close visual inspection of the target is useful for an estimate of potential external damages and failures (solar panels, loss of propellant, antennas, etc.)
- Close visual evaluation is carried out by means of an inspecting camera mounted on a robotic arm, operated only at a close range
- Distance sensor and navigation camera used to meet mission requirements

Mission Schedule

- 1. Parking Orbit (PO): relative free-dynamics around the target to acquire preliminary information regarding target's state (shape, attitude, angular motion, viewpoints)
- 2. Approaching Phase (AP): the chaser moves toward the first viewpoint following an optimized trajectory
- 3. Observation Phase (OP): remaining in fixed position relative to the target, the chaser performs visual inspection of its surface by means of a camera mounted on a robotic arm
- 4. Transfer Branch (TB): transfer to the next viewpoint following an optimized, collision-free path
- 5. Return Phase (RP): phases 3-4 are repeated until all the viewpoints have been visited; then, the chaser returns to the PO

GUIDANCE (Trajectory design)

PERFORMANCE & SAFETY

GNC Architecture

NAVIGATION (State Estimation)

MISSION ACCOMPLISHMENT

STATES STATES

CONTROL (Trajectory Tracking)

> PRECISION & SAFETY

Dynamics: Tschauner-Hempel Equations $\ddot{x} = 2\omega \dot{y} + \omega^2 x + \dot{\omega} y + \mu_{\oplus} \frac{r_0 + x}{r_1^3} + \frac{\mu_{\oplus}}{r_0^2} - D_{1,x} + D_{0,x} + J_{1,x} - J_{0,x} + u_x$ $\ddot{y} = -2\omega \dot{x} + \omega^2 y - \dot{\omega} x - \mu_{\oplus} \frac{y}{r_1^3} - D_{1,y} + D_{0,y} + J_{1,y} - J_{0,y} + u_y$ $\ddot{z} = -\mu_{\oplus r_1^3} - D_{1,z} + D_{0,z} + J_{1,z} - J_{0,z} + u_z$ 0 = target1 = chaser

Target on an elliptical orbit

Non Linear equations

Drag and J₂ perturbations

Control

Guidance: Desired Trajectory Computation

The chaser follows an optimized trajectory during AP and TBs, while it keeps a fixed position with respect to the target during OPs

Trajectory Optimization for AP and TBs
Minimization of the maneuver Delta V (propellant mass)
Inverse optimization method
Collision Avoidance
Choice of next viewpoint on a minimum Delta V basis

Keeping during OPs

Visual Inspection operation requires a relative still position in order to operate the robotic arm

Chaser in phase with the target's rotation (i.e. keeps its position relative to the target)

Guidance: Trajectory Definition

Inverse Method: polynomial parameterization

1. Express the objective function by means of state components

3. Analitically satisfy initial and final constraints

 $\Delta V = \int_{t_0}^{t_f} \sqrt{u_x^2 + u_y^2 + u_z^2} dt \qquad \rho(t_{0/f}) = \sum_{k=0}^N \alpha_k t_{0/f}^k = \rho_{0/f}$ $\mathbf{u} = \int (\boldsymbol{\rho}, \, \dot{\boldsymbol{\rho}}, \, \ddot{\boldsymbol{\rho}}) \qquad \begin{array}{c} \text{Depends on the} \\ \text{chosen dynamical} \\ \text{model} \end{array} \dot{\boldsymbol{\rho}}(t_{0/f}) = \sum_{k=1}^N \alpha_k t_{0/f}^{k-1} = \dot{\boldsymbol{\rho}}_{0/f}$

2. Parameterize the state. Polynomials of order 5 have been chosen

$$\boldsymbol{\rho}(t) = \sum_{k=0}^{N} \boldsymbol{\alpha}_k t^k$$

 ΛI

4. Express ΔV as a function of free parameterization coefficients and vary them to find a minimum

$$\Delta V = f\left(\alpha_k\right)$$

Non-Linear Constraints: Collision Avoidance

Keep Out Coat (KOC)

$$h(x,y,z) = \left(\frac{x-x_c}{a+\delta}\right)^{n_1} + \left(\frac{y-y_c}{b+\delta}\right)^{n_2} + \left(\frac{z-z_c}{c+\delta}\right)^{n_3} - 1$$

The safety zone shape is created as a multiplication of superellipsoids, which still retains the above properties

 $l(x, y, z) = h_c h_{p_1} h_{p_2}$ Coat shape

Superellipsoid

Non-Linear Constraints: Collision Avoidance

Keep Out Coat (KOC)

When designing the relative trajectory we want to avoid collisions between chaser and target *we design a trajectory which does not pass in the KOC* The analytical condition that assures no passage in the KOC is (recalling superellipsoid properties):

 $l\left(\boldsymbol{\rho}^{BODY}\left(t\right)\right) > 0$

Which means that the chaser's center of mass never stays inside the safety shape

Navigation: Unscented H-Infinity Filter

 Differently from a Kalman filter approach (minimum mean covariance), UHF is a worst case minimization filter (minmax filter), meaning it minimizes the following cost function

$$\mathbf{J} = \frac{\sum_{k=0}^{N-1} || \mathbf{x}_{k} - \hat{\mathbf{x}}_{k} ||^{2}}{|| \mathbf{x}_{0} - \hat{\mathbf{x}}_{0} ||^{2} + \sum_{k=0}^{N-1} (|| \mathbf{w}_{k} ||^{2} + || \mathbf{v}_{k} ||^{2})} \implies \hat{\mathbf{P}}_{k} = \left(\left(\hat{\mathbf{P}}_{k}^{0} - \mathbf{K}_{k} \hat{\mathbf{P}}_{k}^{yy} \mathbf{K}_{k}^{T} \right)^{-1} - \frac{1}{\eta_{k}} \mathbf{I}_{L} \right)^{-1}$$

- UHF is a conservative filter, as it increases the covariance at each step
- A conservative filter is more suitable in proximity operations, where collisions must be avoided
- Relative range, azimuth and elevation angles are measured by sensors and used inside the UHF

Control: PD/ PD + feedforward

Two control strategies are compared:

Proportional Derivative (PD) control, where the gains are computed by means of a Linear Quadratic Regulator (LQR)

$$\mathbf{u} = -K\left(\hat{\mathbf{x}} - \mathbf{x}_{des}\right)$$

✤ PD with the addition of a FeedForward (FF) term

$$\mathbf{u} = \ddot{\mathbf{x}}_{des} - K\left(\hat{\mathbf{x}} - \mathbf{x}_{des}\right)$$

Simulation Scenario: Parameters

Initial and orbital parameters

Target Dimensions

Quantity	Values	Quantity	Values (m)
Coe (a, e, i, Ω, ω, v ₀)	7500, 0.1, 99.84°, 150°, 100°, 0°	r _{cil}	3
Initial Relative Position	100 m, 0 m, 100 m	h_{cil}	12
Initial Relative Velocity	0 m/s, -0.23 m/s, 0 m/s	l _{pan}	20
Initial Target's Angular Velocity	0.1 deg/s, 0.2 deg/s, 0.3 deg/s	w _{pan}	5
Keep Out Coat Safety Offset	1 m	h _{pan}	0.1

Mission Time Schedule

	РО	AP	ОР	ТВ	RP
Time (s)	3230 (T/2)	5810	300	600	5810

Simulation Scenario: Viewpoints

6 viewpoints have been identified as sufficient to visually assess the presence of failures on this particular target's shape

	X	- X	Y	- Y	Z	- Z			
Distance from center of mass (m)	24.5	- 24.5	4.5	- 4.5	7.5	- 7.5			
the of mass (m) $\uparrow z$ $\downarrow \downarrow $									

Simulation Scenario #1: Results

Simulation Scenario #1: Results

UHF and PD Control $\Longrightarrow \Delta V = 2.52 \text{ m/s}$

Simulation Scenario #2: Results

UHF and PD+FF Control $\Longrightarrow \Delta V = 2.34 \text{ m/s}$

Final Remarks

A close visual inspection of an uncrontrolled, freely-tumbling satellite can be safely accomplished by means of the proposed mission profile

- The guidance block always provides an optimized, collision-free reference trajectory, with an associated relatively low Delta V (~ m/s)
- The navigation block (UHF) has proven to be robust and accurate in all tested cases

Drawbacks and possible improvements

- Tracking error's peaks of 1.3 meters cannot be reduced any further since a linear control strategy has been used in non-linear dynamics. Still, these errors will not cause mission any failure since the safety offset has been set to 2 meters and the error is along-track
- A non-linear control strategy would diminish tracking error and guarantee a preciser visual inspection of the target
- Viewpoints determination should be made fully automatized

Thanks for your attention

Backup Slides

Dynamics: Perturbations

Earth Centered Inertial

Hill Reference Frame

$$D^{ECI} = -\frac{1}{2m} C_D A \varrho v_{rel}^2 \hat{\mathbf{v}}_{rel}$$
$$J^{ECI} = -\left(\frac{3}{2} J_2 \mu_{\oplus} \frac{R_{\oplus}^2}{r^4}\right) \begin{bmatrix} \left(1 - 5\frac{r_z^2}{r^2}\right) \frac{r_x}{r} \\ \left(1 - 5\frac{r_z^2}{r^2}\right) \frac{r_y}{r} \\ \left(3 - 5\frac{r_z^2}{r^2}\right) \frac{r_z}{r} \end{bmatrix}$$

$$D^{Hill} = {}^{Hill} \mathcal{R}_{ECI} D^{ECI}$$
$$J^{Hill} = {}^{Hill} \mathcal{R}_{ECI} J^{ECI}$$

Attitude Dynamics: Free-Tumbling Target

- 3-axes, freely tumbling target
- Earth's gravity gradient taken into account
- Attitude kinematics written with respect to Hill reference frame \implies Body-to-Hill ${}^{Hill}C_{Body}$ rotation matrix can be computed \Leftarrow

$$\dot{\boldsymbol{\omega}}_{B/I} = \mathcal{I}^{-1} \left(-\boldsymbol{\omega}_{B/I} \times \mathcal{I} \boldsymbol{\omega}_{B/I} + 3 \frac{\mu_{\oplus}}{r_0^3} \hat{\mathbf{r}}_0 \times \mathcal{I} \hat{\mathbf{r}}_0 \right)$$

$$\boldsymbol{\omega}_{B/H} = \boldsymbol{\omega}_{B/I} - \boldsymbol{\omega}_{H/I}$$

$$\dot{\mathbf{q}}_{B/H} = \frac{1}{2} \Omega \left(\boldsymbol{\omega}_{B/H} \right) \, \mathbf{q}_{B/H}$$

Mission Schedule

In order to correctly accomplish the target' s inspection, the following phases have been identified as relevant:

- 1. Parking Orbit (PO): the chaser is in a free-dynamics around the target to acquire preliminary information regarding target's state;
- 2. Approaching Phase (AP): starting from the PO, the chaser moves toward the first viewpoint following an optimized trajectory;
- 3. Observation Phase (OP): remaining in fixed position relatively to the target, the chaser performs visual inspection of target's surface by means of a camera mounted on a robotic arm;
- 4. Transfer Branch (TB): the chaser transfers to the next viewpoint following an optimized, collision-free path;
- 5. Return Phase (RP): phases 3-4 are repeated until all the viewpoints have been visited. Then, the chaser returns to the PO.

Mission Schedule

