

IAA-AAS-CU-17-03-03

NANOSATC-BR2, 2 UNIT CUBESAT, POWER ANALYSIS, SOLAR FLUX PREDICTION, DESING AND 3D PRINTING OF THE FLIGHT MODEL FROM THE UFSM & INPE'S NANOSATC-BR, CUBESAT DEVELOPMENT PROGRAM

Lorenzzo Quevedo Mantovani¹, Rodrigo Passos Marques², Alex Müller², Eduardo Xavier Barreto³, André Luís da Silva⁴, Otávio dos Santos Cupertino Durão ⁵, Fátima Mattielo-Francisco⁵, Nelson Jorge Schuch⁶

- ¹Aerospace Engineering Student at the Federal University of Santa Maria (UFSM), Santa Maria RS, Brazil.
 lorenzzo.mantovani@gmail.com
- ²Mechanical and Eletrical Engineering Student at the Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil. rodrigo_marques198@hotmail.com, alexmuller1997@gmail.com
- ³Department of Mechanical Engineering at the Federal University of Santa Maria (UFSM), Santa Maria RS, Brazil. eduardo.barreto@gmail.com
- Aerospace Engineering, Federal University of Santa Maria (UFSM), Assistant Professor, Santa Maria RS, Brazil. andre.silva@ufsm.br
- ⁵National Institute for Space Research (INPE/MCTIC), São José dos Campos SP, Brazil. otavio.durao@inpe.br, fatima.mattielo@inpe.br
- ⁶Southern Regional Space Research Center CRS/COCRE/INPE-MCTIC, in collaboration with the Santa Maria Space Science Laboratory LACESM/CT – UFSM, Santa Maria – RS, Brazil. njschuch@gmail.com

Technical Session: Mission

4th IAA Conference on University Satellites Missions & CubeSat Workshop International Academy of Astronautics – IAA Rome – Italy December 4th – 7th, 2017

NANOSATC-BR1- NCBR1

- Objectives:
 - Scientific
 - Technological
 - Student engagement
- 1U platform and GS purchased from ISIS, through international bid in 2010
 - Delivery 2011
- Payloads
 - Magnetometer INPE/MCTIC
 - Fault tolerant FPGA UFRGS
 - IC on/off driver SMDH/UFSM

NANOSATC-BR1- NCBR1

- It is operational until today; 3 year and 5 months generating data from the payloads and platform subsystems;
- All payloads are with nominal performances;
- Energy power subsystem is with low voltage in the batteries;
- It is not possible anymore to download log files;
- The data **is presently obtained by nominal beacon:** (165 kbytes of data per beacon); at 30 sec. Interval.
- The World Amateur Radio Network is currently providing data.

NANOSATC-BR2 – NCBR2

- Payloads:
 - Langmuir Probe (INPE/MCTIC);
 - Attitude Determination System:
 - (Cooperation INPE/MCTIC with UFMG UFABC);
 - Other ICs by SMDH and UFRGS with INPE/MCTIC;
 - Two Magnetometers.
- Launch through international bid in 2018

NANOSATC-BR2 – EM Platform

All I/Os for Prototyping

— EM Platform Payload

Objective:

Help students better understand the satellite Satellite Model to be exposed worldwide

Steps:

- Design the Model;
- 3D Print the Model;

 A reliable connection between the CubeSat and the launch vehicle is made through the P-POD

• The P-POD rails measure 227mm, since it is longer than the satellite

 The solar cells attached to the structure were designed following Innovative Solutions in Space (ISIS) standard design

It has a rectangular design, although it has fillets on its corners

 The final conception for the Langmuir Probe is attached on 2 sides of the NANOSATC-BR2

 The final model has the Langmuir Probe and the Antennas in the upper face

• 3D Printed Model

Objective:

Obtain Power Balance.

Steps:

- Estimate Power Generation;
- Estimate Power Consumption;

 To estimate Power Generation, the NCBR1 orbit is considered for the NCBR2

- Orbit
 - Polar: 98° Inclination
 - Eccentricity: 0,00113
 - Velocity: 7,5 km/s
 - Semi-major Axis: 6997 km
 - Orbit Period: 97 minutes

• Umbra estimated for the orbit: 34 minutes

 Angle between sun vector and area vector is determined in each instant of time

• Power Generation in faces +Y,+Z,-Y,-Z

• Power Consumption (Components)

Components	Maximum Consumption	Duty Cycle	Consumption with duty cycle
Electric Power Subsystem	0,249 W	100 %	0,249 W
Board Computer	0,380 W	100 %	0,380 W
Receiver (TRXUV RX)	0,237 W	100 %	0,237 W
Transmitter (TRXUV TX)	0,787 W	4,2 %	0,033 W
Antenna system	0,040 W	100 %	0,040 W
2 Magnetometers (XEN 1210)	0,031 W	100 %	0,031 W
FPGA	0,049 W	100 %	0,049 W
2 SMDH ICs	0,030 W	100 %	0,030 W
Langmuir Probe	0,930 W	100 %	0,930 W
Attitude Determination System SDATF	0,271 W	100 %	0,271 W

TOTAL

2,25 W

Power Balance

Components	Maximum Consumption	Duty Cycle	Consumption with duty cycle
Electric Power Subsystem	0,249 W	100 %	0,249 W
Board Computer	0,380 W	100 %	0,380 W
Receptor (TRXUV RX)	0,237 W	100 %	0,237 W
Transmitter (TRXUV TX)	0,787 W	4,2 %	0,033 W
Antenna System	0,040 W	100 %	0,040 W
2 Magnetometers (XEN 1210)	0,031 W	100 %	0,031 W
FPGA	0,049 W	100 %	0,049 W
2 SMDH ICs	0,030 W	100 %	0,030 W
Langmuir Probe	0,800 W	73,4 %	0,683 W
Attitude Determination System SDATF	0,271 W	100 %	0,271 W

TOTAL

2,003 W

With the Simulation, Thermal Radiation was determined Hot Case

Angular velocity X axis (rad/s)	Angular velocity Y axis (rad/s)	Angular velocity Z axis (rad/s)	Mean Heat Flux Solar Incidence (W/m²)	Mean Heat Flux Eclipse (W/m²)
0	0	0	454,03	54,24
0,087	0,087	0,087	518,52	55,91
0,1221	0,035	0,070	523,3	55,91
0,2618	0,2618	0,2618	518,31	55,92
0,5235	0,5235	0,5235	518,36	55,92
1,047	1,047	1,047	518,35	55,91
1,57	1,57	1,57	518,33	55,92
Mean Value			509,88	55,67

Cold Case

Angular velocity X axis (rad/s)	Angular velocity Y axis (rad/s)	Angular velocity Z axis (rad/s)	Mean Heat Flux Solar Incidence (W/m²)	Mean Heat Flux Eclipse (W/m²)
0	0	0	395,41	26,32
0,087	0,087	0,087	452,24	27,13
0,1221	0,035	0,070	457,21	27,13
0,2618	0,2618	0,2618	452,02	27,13
0,5235	0,5235	0,5235	452,09	27,13
1,047	1,047	1,047	452,09	27,13
1,57	1,57	1,57	452,07	27,13
Mean Value			444,73	27,01

- The 3D Model is complete and ready to be used by students and exposed in events worldwide;
- Power Generation and Thermal Radiation were estimated;
- Positive Power Balance was achieved reducing Langmuir's Probe Duty Cycle for 73.4%. Can operate during solar incidence and eclipse;

ACKNOWLEDGMENTS

- The authors thank to the Brazilian Space Agency AEB, SEXEC/MCTIC, COCRE/INPE-MCTIC, UFSM-FATEC for the support, opportunity and grants for the Brazilian INPE-UFSM NANOSATC-BR Cubesat Development Program, with its CubeSats: the NANOSATC-BR1 & the NANOSATC-BR2 Projects.
- The authors thank and acknowledges to Eng. Abe Bonnema and the ISIS's Board o Directors for the support to the Brazilian students and for the NANOSATC-BR, CubeSats Development Program, the NANOSATC-BR1 & the NANOSATC-BR2 Projects.
- The authors thank to Santa Maria Space Science Laboratory LACESM/CT-UFSM for technical support using The LACESM/CT-UFSM's 3D Printer "Hyrel Hydra" for the NANOSATC-BR2 3D Printer and specially to Professor Dr. Andrei Piccinini Legg for guidance and orientation with the 3D Printer "Hyrel Hydra".
- The authors thank to MCTIC-CNPq/(INPE/PCI-PIBIC-PIBIT) and to FAPERGS Programs for fellowships.

The NANOSATC-BR Program site is: www.inpe.br/crs/nanosat/

Grazie

Lorenzzo Quevedo Mantovani

lorenzzo.mantovani@gmail.com

IAA-AAS-CU-17-03-03

Thank

you

Technical Session: Mission

4th IAA Conference on University Satellites Missions & CubeSat Workshop International Academy of Astronautics – IAA Rome – Italy

December 4th – 7th, 2017

