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Radio Frequency Blackout

Solution: Decrease the Plasma Density

Communication Cut-off:

𝜂𝑝𝑙𝑎𝑠𝑚𝑎 > 𝜂𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝜂𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑓𝑟𝑎𝑑𝑖𝑜

9×103

2
m3

GNSS Navigation 

Vehicle Tracking

Real-time Data Telemetry

Voice Communication

At hypersonic 

velocities:

1 minute of blackout

<=>

≈ 500 km  of trajectory
*Yusuke Takahashi, Reo Nakasato and Nobuyuki Oshima, 

“Analysis of Radio Frequency Blackout for a Blunt-Body 

Capsule in Atmospheric Reentry Missions”, 2016



Magnetic Window – Review

■ 1961: Hodora has shown that it is possible to alter the electromagnetic

properties of the plasma by superposing a static magnetic field (~0.0357 T);

■ Alternative to the constant magnetic field, a time-varying magnetic field

can be used (Stenzel and Urrutia);

4*M.K. Kim, “Electromagnetic Manipulation of Plasma Layer for Re-Entry Vehicles.” PhD dissertation University of Michigan, 2009.
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Magnetic Window – Review 

■ Experimental studies on reentry and hypersonic vehicles are extremely expensive

and therefore few have been performed (RAM-C are an exception)

■ The concept of using magnetic control of the plasma density remains untested in

space;
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Magnetic Window – Review 

■ Experimental studies on reentry and hypersonic vehicles are extremely expensive

and therefore few have been performed (RAM-C are an exception)

■ The concept of using magnetic control of the plasma density remains untested in

space;

Low-cost flight experiment to 

investigate the effects of a 

magnetic field in the Ionospheric 

plasma.



Ionospheric Plasma
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Target 

Zone

Re-entry

■ Plasma density in Ionosphere 

ranges from 109 to 1012 m-3

■ Vehicle reentering the atmosphere: 

from 1015 to 1020 m-3

■ Low Ionosphere (90 – 320 km 

altitude) is the least explored layer 

of the atmosphere. 



MECSE Mission

MO2

Study the formation of plasma 

surrounding the S/C in the Low 

Ionosphere

MO3
Assess the effects of the S/C 

attitude motion on the plasma layer  

MO4 Study the effects of an 

electromagnetic field on the plasma 

layer

PDS
Plasma

Dynamics 

Study

PLME
Plasma Layer 

Mitigation 

Experiment

Science

Education MO1
Provide hands-on experience to 

university students on space 

projects
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Mission Overview

9

Plasma Layer Mitigation 
Experiment

(PLME)

Plasma Dynamics Study
(PDS)

S/C Attitude
Measure the Electron 

Density of Plasma
Generate an 

Electromagnetic Field

Langmuir Probes 
Technology 

ElectroMagnetic 
Generator

Pointing errors and 
precession of the S/C

affects the 
measurements



Mission Challenge 1 – Get to Target 
Zone
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CubeSat 
Deployment

Initial Orbit

Earth

hplasma ≈ 250 km

Karman Line
≈ 120 km 

Target 
Zone

Disintegration

~ 300 km 
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EMG

(ElectroMagneti

c Generator)

BUS

Langmuir 

Sensors 

Payload

Mission Challenge 2 – system 
drivers

POWER

ATTITUDE 

THERMAL / 

MAGNETIC 

PROTECTION



Mission Challenge 3 – Payloads

■ Langmuir Probes -> 
mNLP 
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*multi-Needle Langmuir Probes (mNLP) CubeStar - University of Oslo

■ EMG No technology available

𝜂𝑒 =
𝑚𝑒

2𝑞 𝑞2𝑟𝑙 2

 𝛥(𝐼𝑐
2

𝛥𝑉

𝑚𝑒: mass of an electron 

𝑞: charge of an electron 

𝑟: radius of each probe 

𝑙: length of each probe



Payload Configuration - Horizontal Dipole
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𝐵 =
𝜇𝑁𝐼

𝐿𝑐𝑜𝑖𝑙

• B: magnetic field intensity

• μ: magnetic permeability

• N: number turns

• I: current 

LP position;

LP booms size;

EMG design (B).

25 mm

75 mm

Lcoil

N S
V

Coil – Cooper Wire Magnetic Core – Pure IronLangmuir Probe



Concept of Operations - Payload 
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𝑬𝑫𝑹 =
𝜼𝒆

𝜼𝟎

ELECTRON
DENSITY
REDUCTION

PDS

PLME

POWER

𝜂0 𝜂𝑒 𝜂0

t(s)

0 10 11 21



Conceptual Design
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TTC
• 100% duty cycle of mNLP;

• Data volume ~ 18 Mb per day.

EPS
• High peak power (~100W);

• Storage: supercapacitors + battery;

AOCS 
• Velocity-vector stabilization w/o 

magnetic parts;

• Attitude Control: Aerodynamic;

MSS
• Develop a modular structure.

CDH
• COTS;

• Command the subsystem;

• Memory storage.

(housekeeping & scientific

data)

TCS 
• Temperature of EMG (short time);

AOCS: Attitude and Orbit Control System

EPS: Electrical Power System

CDH: Command & Data Handling

TCS: Thermal Control System

TTC: Telemetry, Tracking & Control

MSS: Mechanical System and Structures



Conclusions
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■ The feasibility of performing a mission to manipulate plasma was assessed;

■ The mission challenges were identified (power and EMG are the main ones);

■ A conceptual design of the system was proposed;

■ Stepping Stone for MECSE project;
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SCIENTIFIC RESEARCH

MHD/EHD control of the plasma layer as a
solution for RF blackout mitigation.

TECHNOLOGY DEMONSTRATION

Development of a tool for plasma layer
manipulation.

EDUCATIONAL PROJECT

Hands-on project with the power to foster
Portuguese space education.

COMMERCIAL VALUE

Strategies for the mitigation of RF Blackout are
important for the design of future space vehicles.



Future Work

■ ElectroMagnetic Generator:

– Proceed the Feasibility Studies;

– Simulations of magnetic decay with distance;

– Impact of the sensor location in the magnetic field stregth;

– Experimental tests (temperature, power and magnetic disturbances)

■ Refine concepts ;

■ Expand our team ;
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Magnetic Window

*M.K. Kim, “Electromagnetic Manipulation of Plasma Layer for Re-Entry Vehicles.” PhD dissertation University of Michigan, 2009.

It makes use of a pulsed current flowing through an insulated conductor
surrounded by plasma, generating variable magnetic fields, which
magnetizes solely the electrons. These electrons are expelled from the
field, creating a Hall electric field, and expelling the ions, thus decreasing
plasma frequency in a small area, through which radio signals can pass .

E x B Drift



mNLP 
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𝑚𝑒: mass of an electron 

𝑞: charge of an electron 

𝑟: radius of each probe 

𝑙: length of each probe

*multi-Needle Langmuir Probes (mNLP) CubeStar 

University of Oslo



Pressure contours around the RAM-C II blunt body for horizontal (top) and vertical (bottom) 
dipoles for magnetic field intensity of 0,25; 0,5; 0,75T and 1 T

Previous Work 
[7] Dias F., Xisto C., Páscoa J. (2016) "Numerical Computations of MHD Flow on  
Hypersonic and Re-Entry Vehicles", ASME Paper IMECE-2016-65676, pp.9.


