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Gravity gradient effect on attitude motion of 

a (dumbell) spacecraft



Equilibrium configurations

Stable Equilibrium



Formulas

Gravitational torque

wrt the c.o.m. G on a 

particle dm

dm

Integrating over all the mass of the satellite

definition of c.o.m. vector product of 

by itself  



Gravity Gradient Torque and Equations of attitude motion

Adding a «zero» we have

That is

Gravitational Torque 

in body frame



Body components and planar case

Planar Case

xB

zB

yB e = 0



Consider elliptic orbits

BELETSKII 

EQUATION



Periodic solutions Chaotic dynamics Generalized equations



Periodic Solutions



Chaotic Dynamics



Generalized equations



Periodic solutions of small amplitude and small 

eccentricity: Beletskii transformation

BELETSKII 

TRANSFORMATION



Periodic solutions of small amplitude and small 

eccentricity: solution

resonances



Numerical solutions: resonances  

Initial state = (0,0)

alpha = 1/4

Initial state = (0,0)
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Periodic Solutions by Newton-Raphson on the 

Poincarè map

Periodic Attitude Motion with period n-times the orbital period T 

This corresponds to a zero of the function  

Find a zero by Newton-Raphson procedure  

Iterates stop when 



Periodic solutions with period  T (i.e. 2*pi)

Tethered Satellite (alfa = 3)

Eccentricity e=0.2 
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Periodic solutions with period 2 T (i.e. 4*pi)

Orbital Periods

Tethered Satellite (alfa = 3)

Eccentricity e=0.2 

Note that the spacecraft is 

pointing the Earth for long  

time at the apogee region



Periodic solutions period 2 T: 

stability under J2 effect

Orbital Periods



(Stable) Periodic solutions by 

Cell Mapping Approach

Region filled by 1600 cells
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Cell Mapping Output



Periodic Solutions

n=4 Unstable Periodic Solution

n=58 Stable Periodic Solution



Chaos

C1 : sensibility to initial conditions

C2 : There is an infinite number of periodic solutions

C3 : There are some solutions approaching any region of the phase space (ergodicity)

e = 0

oscillations

rotations

separatrix

unstable equilibrium

Splitting of the separatrix due to perturbation produces unpredictable

attitude dynamics with many changes from rotation to oscillation state and 

viceversa



Poincaré maps

Poincaré map of (0,0) 

Poincaré map of (0.4,0) 

Poincaré map of (1.41,0) Poincaré map of (1.42,0) 



Rotations/Oscillations

orbital periods



Separatrix splitting

For moderate values of e , both regular and irregular motions are present in 

phase space. Chaotic behaviour occurs near the separatrix splitting

Regions on the phase space trapped by 

separatrix splitting are mapped into 

regions of the same kind, with shifts 

between oscillation and rotation regimes

Separatrix splitting was proved by computation of the 

Melnikov function



No regular motion

For higher values of e disorder appears everywhere in phase space

Iterates of Poincaré map of the point (0,0) , e = 0.4

Starting point

Separatrix splitting tranport mechanism can fill the 

phase space region. Also splitting of stable and unstable 

manifolds of periodic orbits may occur far from the 

separatrix 



Liapunov characteristic exponents

Time independent Linear System : Eigenvalues of the matrix

Linear System with periodic coefficients: Floquet exponents

Dynamic around a trajectory of a generic dyn. syst.: Lyapunov exponents

STABILITY



Chaos index
If one Lyapunov characteristic exponent of the (0,0) trajectory is positive, then 

the dynamics is chaotic

Neverthless periodic solutions exist



Is gravity gradient stabilization feasible ?

P.Hughes “Spacecraft attitude dynamics”  Wiley 1986

“It is clear that gravity gradient stabilization falls 

far short of sufficient for most modern 

applications. The best people in the business tried 

many configurations and many types of damping , 

yet their success was quite limited. 

Neverthless for certain special situations, 

particularly in near Earth orbits, can profitably 

be used when accurate pointing is not required.”

Flight experience of : APL, OV-10 , Dodge , RAE, NRL-164.              

GEOS I, GEOS II  



Gravity gradient stabilized

Celestial bodies

TIGRISAT

(2014)
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