
GAUSS OBC ABACUS 2017

Datasheet

[ABACUS_201702]

Group of Astrodynamics for the Use of Space Systems

Doc N: ABACUS_201702

Table of contents

Tab	ole of contents	1
1.	Introduction	3
1	.1. ABACUS Features	3
1	.2. Block Diagram	6
2.	Pinouts	7
3.	Inertial Measurement Unit Details	10
3	.1. Orientation of Axes	10
4.	Absolute Maximum Ratings	11
5.	General Recommended Operating Conditions	11
6.	Electrical Characteristics	12
7	Physical Characteristics and Drawings	13

Doc N: ABACUS_201702

1. Introduction

ABACUS 2017 is an OBC unit with a general-purpose hardware platform, suited for a wide range of satellite missions. It is designed to be flexible and scalable in terms of processing power, with the goal of maintaining a very low power consumption. It is composed by two different cores, a MCU and a FPGA working cooperatively.

The MCU of ABACUS is a MSP430F5438A-EP manufactured by Ti (Texas Instruments). Ti already provides software examples in order to give the software developers examples on how to use the MCU. GAUSS Srl, however provides another set of libraries that helps the user to interface easily with all the components of the board requiring very little knowledge of the low level hardware involved.

You can use ABACUS Libraries as example code for developing your own software or you can also use directly these libraries on your code for easier development. Keep in mind that this software has already flown on some satellites like TigriSat, UniSat-6 and Serpens.

1.1. ABACUS Features

The presence of a MSP430 microcontroller and a Spartan-3E FPGA, organized in two independent but cooperative cores, provides the system with hardware redundancy and common mode fault tolerance.

The two cores offer many modalities to be implemented (e.g. Master/Slave or multi-Master) and the FPGA offers all the advantages of the RTL coding, for implementing specific tasks (e.g. attitude control) or generic systems also with IP cores of third parts.

With the FPGA, high reliability may be achieved using TMR (triple modular redundancy) configuration codes. Several embedded sensors provide health monitoring and attitude control data.

The system design offers the possibility to reconfigure the FPGA code and the MCU firmware in flight.

Doc N: ABACUS_201702

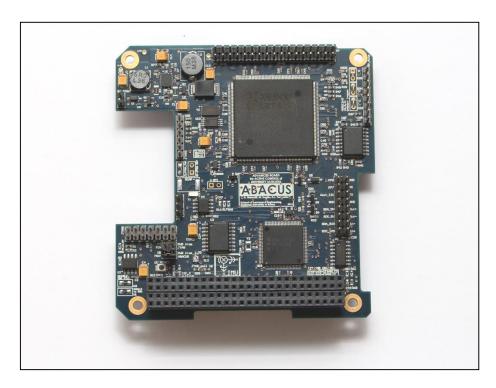


Figure 1 ABACUS OBC

The primary features of the board are:

- Two cores (MCU MSP430 and FPGA Spartan-3E) directly interconnected with a 24 line bus;
- MSP430 EP series is a 16 bit RISC MCU running up to 25MHz. It is an HiRel Enhanced Product of Texas Instruments that supports Defense and Aerospace applications;
- 10 x 3,3V Analog Input and up to 45 x Digital GPIO channels;
- 16 x Voltage level shiftable GPIOs with interrupt features;
- 4 x COM ports (one of them also in RS422/485 standard levels Full or Half Duplex);
- 2 x I2C and 1 x SPI bus interfaces;
- Xilinx Spartan-3E FPGA RAM based core with 500K gates for intensive operations like ADCS, Image processing, or Turbo codes;
- 34 x GPIO (usable as LVDS) and 8 x GPI channels from FPGA;
- FPGA running at 25MHz or 100MHz (default);
- Embedded 16Mb (2MB) SRAM memory dedicated to the FPGA;
- FPGA and MCU reprogrammable from ground;
- Embedded IMU with 3 axis magnetometer, accelerometer and gyroscope;
- Embedded sensors: 3 x temperature sensors, 1 x drawn current monitor;
- Embedded RTC;

Doc N: ABACUS_201702

- Embedded 2 x 16MB flash NOR memories.
- Both cores share the external sensors;
- PC/104 CubeSat form factor compatible;
- Weight of 59 grams. (It might vary depending on your installed options);
- Several modalities for low power consumption (about 50mW with the FPGA OFF, the MCU ON and recording data from sensors on board);
- Powered from the 5V satellite bus;
- Off the shelf industrial grade / automotive components;
- Operating temperature range -40°C to +85°C.

Doc N: ABACUS_201702

1.2. Block Diagram

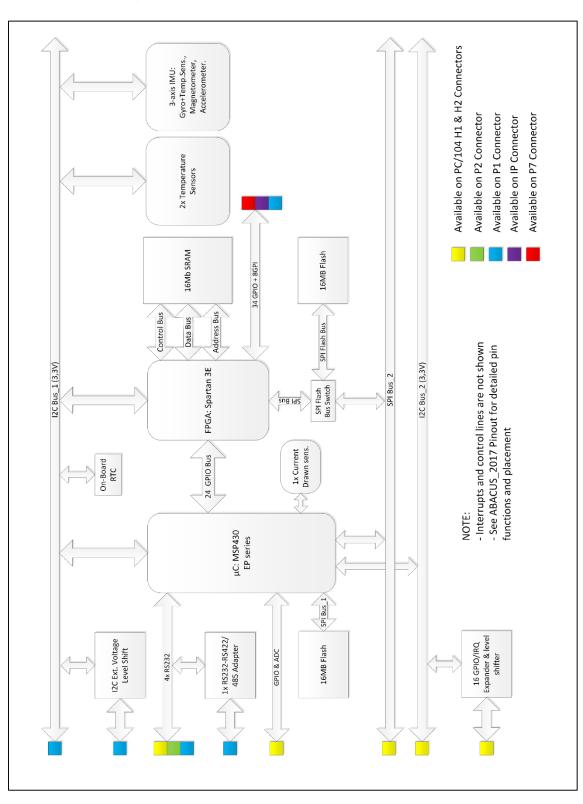


Figure 2 ABACUS General Overview

Doc N: ABACUS_201702

2. Pinouts

On this section the pinout of the ABACUS board is reported. All pins have a pitch of 2.54mm.

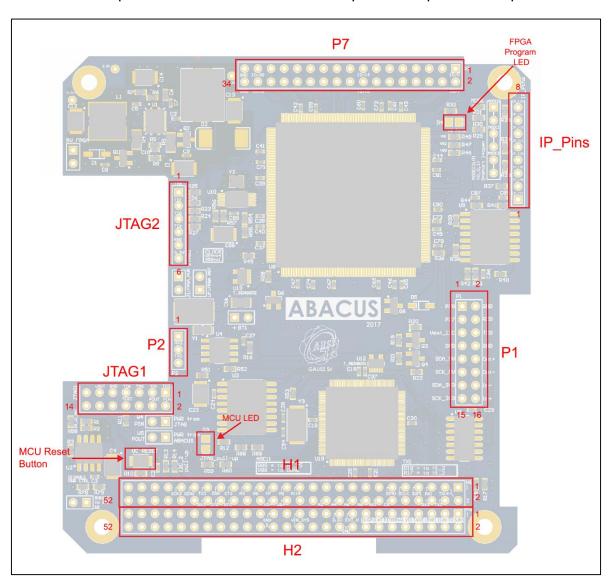


Figure 3 ABACUS Available ports

Doc N: ABACUS_201702

The following tables show the pinout of the different connectors on ABACUS. The colors of the following tables follow the color code reported on the block diagram on Figure 2.

PC104 pin	suggested config.	uC MSP430	PC104 pin	suggested config.	uC MSP430	
H1 1	NC		H1 2	UART1 TXD/GPIO ***	P5.6 ***	
H1 3	NC or UART1_TXD/GPIO ***	P5.6 ***	H1 4	UART2 TXD/GPIO *	P9.4 *	
H1 5	UART1 RXD/GPIO	P5.7	H1 6	UART2 RXD/GPIO *	P9.5 *	
H1 7	SPI_SOMI **	P5.4 **	H1 8	GPIO / RTC IRQ**	P2.0**	
H1 9	SPI SCK **	P5.5 **	H1 10	GPIO	P7.0	
H1 11	SPI SIMO **	P3.7 **	H1 12	SPI CS/GPIO	P3.6	
H1 13	GPIO	P2.2	H1 14	ADC10/GPIO	P7.6	
H1 15	GPIO	P11.1	H1 16	ADC8/GPIO	P7.4	
H1 17	NC.		H1 18	ADC6/GPIO	P6.6	
H1 19	GPIO	P10.0	H1 20	ADC4/GPIO	P6.4	
	NC.		H1 22	ADC2/GPIO	P6.2	
H1 23	NC NC		H1 24	NC		
H1 25	NC or ADC11/GPIO ***	P7.7 ***	H1 26	NC	NC	
H1 27	ADC9/GPIO	P7.5	H1 28	VREF+/VEREF+/GPIO	P5.0	
H1 29	ADC7/GPIO	P6.7	H1 30	VREF-/GPIO	P5.1	
H1 31	ADC5/GPIO	P6.5	H1 32	NC		
H1 33	ADC3/GPIO	P6.3	H1 34	GPIO	P11.2	
H1 35	CTS/GPIO	P3.3	H1 36	RTS/GPIO	P2.7	
H1 37	DSR/GPIO	P3.0	H1 38	DTR/GPIO	P2.6	
H1 39	UART3 TXD/GPIO	P10.4	H1 40	UART3 RXD/GPIO	P10.5	
H1_41	I2C_SDA2_3.3V *	P10.1 *	H1_42	NC		
H1_43	I2C_SCK2_3.3V *	P10.2 *	H1_44	NC		
H1_45	NC		H1_46	NC		
H1_47	NC		H1_48	NC		
H1_49	NC		H1_50	NC		
H1_51	NC		H1_52	NC		
I2C pull-up	be used as I2C port, see Option resistors. o be used as SPI port.	ons Sheet for		onnection are also reported OR, UART2_RXD pin 1, UAR		
(***) see Options Sheet. NB Changed from Abacus 2014			(**) The pin H1 8 and P2.0 are always tied together			
			and them o	an be connected also to the -board. See Options Sheet		
			(***) see C	options Sheet.		
			NB	Changed from Abacus 201	4	
			IND	Changes it off Abdeds 201	•	

Table 1 ABACUS Connector H1 pinout

PC104 pin	fixed conf.	PC104 pin	fixed conf.
H2_1	GPIO EXP1 *	H2_2	GPIO EXP0 *
H2_3	GPIO EXP3 *	H2_4	GPIO EXP2 *
H2_5	GPIO EXP5 *	H2_6	GPIO EXP4 *
H2_7	GPIO EXP7 *	H2_8	GPIO EXP6 *
H2_9	GPIO EXP9 *	H2_10	GPIO EXP8 *
H2_11	GPIO EXP11 *	H2_12	GPIO EXP10 *
H2 13	GPIO EXP13 *	H2 14	GPIO EXP12 *
H2 15	GPIO EXP15 *	H2 16	GPIO EXP14 *
H2_17	GPIO EXP PWR IN **	H2_18	GND
H2_19	3.3V REG PWR OUT	H2_20	GND
H2_21	NC	H2_22	NC
H2_23	NC	H2_24	NC
H2_25	VIN_SYS (+5V)	H2_26	VIN_SYS (+5V)
H2_27	NC	H2_28	NC
H2_29	GND	H2_30	GND
	NC	H2_32	GND
	NC	H2_34	NC
H2_35	NC	H2_36	NC
	NC	H2_38	NC
H2_39	NC	H2_40	NC
H2_41	NC	H2_42	NC
H2_43	NC	H2_44	NC
H2_45	NC	H2_46	NC
H2_47	NC	H2_48	NC
H2_49	NC	H2_50	NC
H2_51	NC	H2_52	NC
(*) I2C to 1	.6 GPIO expander	(*) I2C to 1	.6 GPIO expander
	al source of pwr (1,8V - 5V) for GPIO ptional or NC). See Selectable		

Table 2 ABACUS Connector H2 pinout

Doc N: ABACUS_201702

conn.	fixed conf.	NOTE	P2 conn.	fixed conf.
	is connected to FPGA	FPGA pin 78	1	UART2_RXD/GPIO
	GND	· ·	2	UART2_TXD/GPIO
	is connected to FPGA	FPGA pin 77	3	GND
	UARTO RXD *	uC P3.5	3	GND
	I2C_1 pwr shift input	uc 15.5	P7 conn.	FPGA Spartan3E pir
			P7 1	
	UARTO_TXD *	uC P3.4		106
	GND		P7_2	107
	GND		P7_3	108
	I2C_SDA1 pwr shifted		P7_4	109
	RS422/485 OUT+ *		P7_5	112
	I2C_SCK1 pwr shifted		P7_6	113
	RS422/485 OUT- *		P7_7	115
	I2C_SDA1_3.3V **	uC P3.1 **	P7_8	116
	RS422/485 IN- *		P7_9	119
	I2C_SCK1_3.3V **	uC P3.2 **	P7_10	120
	RS422/485 IN+ *		P7_11	122
	RS232 to RS422/485 adap		P7_12	123
	RS422/485 ports cannot be	used together.	P7_13	126
	ble Options.		P7_14	127
Have to	be used as I2C port		P7_15	128
			P7_16	129
			P7_17	132
			P7_18	133
AG1	uC MSP430 programme	r	P7_19	134
	JTAG TDO		P7_20	135
	NC		P7_21	137
	JTAG TDI		P7_22	138
	3.3V		P7_23	139
	JTAG TMS		P7_24	140
	NC .		P7_25	144
	JTAG TCK		P7_26	145
	JTAG TEST/SBWTCK		P7_27	146
	GND		P7_28	147
	NC TAC Beeck		P7_29	150
	JTAG Reset		P7_30	151
	NC NC		P7_31	152 153
	NC NC		P7_32 P7_33	GND
14	NC		P7_33	GND
			F7_34	GND
AG2	FPGA Spartan3E progra	mmer	TP Pine con	nn.FPGA Spartan3E pir
	TMS		IP_1 *	154
	TDI		IP_2 *	148
	TDO		IP_2 *	142
	тск		IP 4 *	136
	GND		IP_5 *	110
	3.3V		IP_6 *	118
6	0.04		IP_7 *	124
6			11P / -	
6			IP_/ *	130

Table 3 ABACUS Connectors P1, P2, P7, JTAG1, JTAG2 and IP_Pins pinout

Doc N:
ABACUS_201702

3. Inertial Measurement Unit Details

ABACUS comes with a 9DoF IMU:

- 3 Axis magnetometer
- 3 Axis gyroscope
- 3 Axis accelerometer

	Resolution	Sensitivity	Minimum Range	Maximum Range
Accelerometer	16 bit	0.0000610g LSB	2g	16g
Gyroscope	16 bit	0.0076(º/s) LSB	250 %s	2000 º/s
Magnetometer	16 bit	0.15uT LSB		4800uT

Table 4 ABACUS IMU specifications

3.1. Orientation of Axes

The IMU is located on the bottom of the PCB (mounted upside down).

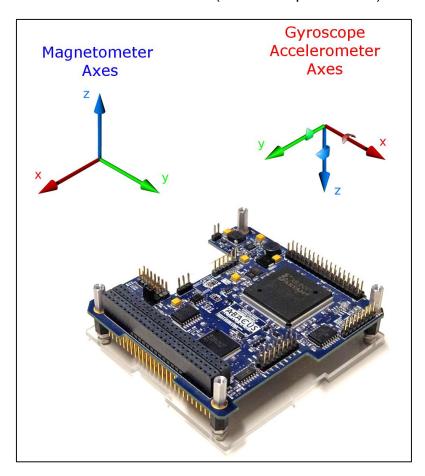


Figure 4 ABACUS IMU Orientation of Axes

Doc N:	
ABACUS_201702	

4. Absolute Maximum Ratings

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 $T_A = 25$ °C, unless otherwise noted.

Parameter *	Min	Max	Unit
Power Vcc pin (on H2 connector)	-0.3	+7	V
MSP430 IO pins (with I2C and SPI Bus)	-0.3	+3.6	V
FPGA IO pins (driver in Hi Z)	-0.85	+4.3	V
IO Expander pins (on H2 connector)	-0.5	+6.5	V
IO Expander IO-Power shift pin (H2_17)	-0.5	+6.5	V
RS422/485 Driver Out – Receiv. In volt.	-7.5	+12.5	V
I2C IO-Power shift pin (P1_5)	-0.3	+6	V
Storage temperature range	-55	+105	°C

Table 5 ABACUS Absolute Maximum Ratings

5. General Recommended Operating Conditions

 $T_A = 25$ °C, unless otherwise noted.

Parameter *	Min	Тур	Max	Unit
Power Vcc pin (on H2 connector)	-	+5	+6.5	V
MSP430 IO pins (with I2C and SPI Bus)	-	+3.3	-	V
FPGA IO pins (driver in Hi Z)	-	+3.3	-	V
IO Expander pins (on H2 connector)	-	-	5.5	V
IO Expander IO-Power shift pin (H2_17)	+1.65	-	5.5	V
RS422/485 common mode voltage Vcm	-7	-	+12	V
I2C IO-Power shift pin (P1_5)	+3.3	-	+5	V
Temperature range	-40	-	+85	°C

Table 6 ABACUS Recommended Operating Conditions

^{*} Voltages refer to GND

^{*} Voltages refer to GND

Doc N:
ABACUS_201702

6. Electrical Characteristics

Considering Vcc = 5V. T_A = 25°C, unless otherwise noted.

Parameter	Condition	Peak	Unit
Current	FPGA Off, MCU in sleep	10	mΑ
	FPGA Off, MCU at 1MHz	11	mΑ
	FPGA Off, MCU at 25MHz	16	mΑ
	FPGA at 25MHz, MCU at 25MHz*	90	mΑ
	FPGA at 100MHz, MCU at 25MHz*	130	mΑ
	At power up	160	mA

Table 7 ABACUS Electrical Characteristics

^{*} With the provided test program

Doc N: ABACUS_201702

7. Physical Characteristics and Drawings

Measure	Value
Mass including all connectors	62g
External size including all connectors	90.14 x 95.86 x 23.24 mm

Table 8 ABACUS Physical Characteristics

All dimensions are in mm.

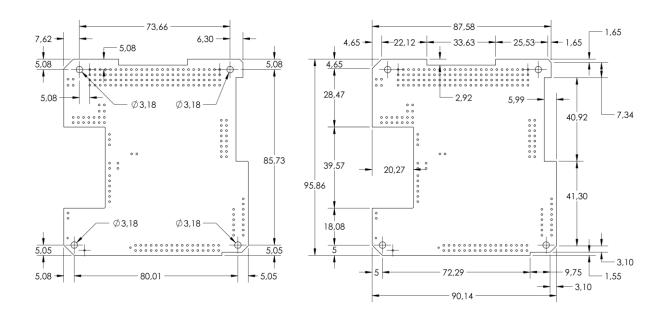


Figure 5 ABACUS Physical Dimensions TOP

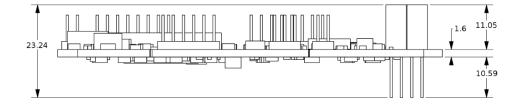


Figure 6 ABACUS Physical Dimensions side